
- 260 pages
- English
- PDF
- Available on iOS & Android
Embedding Problems in Symplectic Geometry
About this book
Symplectic geometry is the geometry underlying Hamiltonian dynamics, and symplectic mappings arise as time-1-maps of Hamiltonian flows. The spectacular rigidity phenomena for symplectic mappings discovered in the last two decades show that certain things cannot be done by a symplectic mapping. For instance, Gromov's famous "non-squeezing'' theorem states that one cannot map a ball into a thinner cylinder by a symplectic embedding. The aim of this book is to show that certain other things can be done by symplectic mappings. This is achieved by various elementary and explicit symplectic embedding constructions, such as "folding", "wrapping'', and "lifting''. These constructions are carried out in detail and are used to solve some specific symplectic embedding problems.
The exposition is self-contained and addressed to students and researchers interested in geometry or dynamics.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Frontmatter
- Contents
- Introduction
- Proof of Theorem 1
- Proof of Theorem 2
- Multiple symplectic folding in four dimensions
- Symplectic folding in higher dimensions
- Proof of Theorem 3
- Symplectic wrapping
- Proof of Theorem 4
- Packing symplectic manifolds by hand
- Appendix
- Backmatter