QUANTUM EVOLUTION EB
eBook - ePub

QUANTUM EVOLUTION EB

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

QUANTUM EVOLUTION EB

About this book

Quantum Evolution presents a revolutionary new scientific theory by asking: is there a force of will behind evolution? In his astonishing first book, Johnjoe McFadden shows that there is.

'McFadden's bold hypothesis that quantum physics plays a key role in the origin and evolution of life looks increasingly plausible. The weird behaviour of matter and information at the quantum level could be just what is needed to explain life's astonishing properties. If these ideas are right, they will transform our understanding of the relationship between physics and biology.' PAUL DAVIES

In this brilliant debut, Johnjoe McFadden puts forward a theory of quantum evolution. He shows how living organisms have the ability to will themselves into action. Indeed, such an ability may be life's most fundamental attribute. This has radical implications. Evolution may not be random at all, as recent evolutionary theories have taught: rather, cells may, in certain circumstances, be able to choose to mutate particular genes that provide an advantage in the environment in which the cell finds itself. This 'will' – described by McFadden as 'the life force' – has startling implications. It is at the root of consciousness and free-will and provides a new understanding of the origins of life and the purpose of death.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access QUANTUM EVOLUTION EB by Johnjoe McFadden in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Mathematics Essays. We have over one million books available in our catalogue for you to explore.

Information

1

What Is Life?

Starlight glistens on a spaceship’s silvery hull as it cruises, unseen and unmanned, amongst the planets of a distant solar system. Guided by the encoded instructions of an alien civilization it glides past dark, rocky planetary outposts and bloated gas giants until it reaches its goal, and swings into the orbit of an inner planet. A probe is released. Retrorockets fire that adjust the probe’s trajectory, easing it slightly from the mother-ship’s geostationary orbit and turning its heat-resistant nose towards the ground. The grip of the planet’s gravity drags the probe inwards, through ever-decreasing orbits. Faster and faster it spins until, plunging through clouds, it finally emerges under a leaden sky. A parachute is released to halt the headlong dive, and the craft slowly descends to land on a rock-strewn landscape.
Minutes later, a metallic lid is drawn back, exposing a camera lens, and pictures are beamed back to the mother-ship. The camera pans across the rocky scene. The same rubble-strewn landscape is everywhere – rocks of all shapes and sizes lie sunken into fine grey sand. The air is still. Nothing moves. The camera scans the monotonous surface stretching in all directions towards the horizon – grey rocks, some precariously balanced atop others, others lie shattered, blasted by the forces of alien weather. The camera pans again, and then one rock, in shape and colour much like any other, spreads its wings and soars into the sky. The mother-ship sends a signal backward through the vastness of space, towards the distant home of the spaceship’s makers: LIFE!
The planet is, of course, Earth and the rock a bird, perhaps a rock pigeon, lost in barren desert. The story illustrates the wonder we should feel at the most remarkable phenomenon in the known universe – life. Our telescopes and space-probes return images of the universe’s many marvels – the twisted braids of Saturn’s rings, Neptune’s moon Mirander’s scarred and shattered surface, the birth of stars within the Crab Nebulae. Extraordinary as these are, they pale before the astonishing nature of life itself. And yet, all life forms are essentially rocks – made of the same materials, obeying the same laws, as the rocks, stone and sand that surround us. We are rocks that run and swim, climb and leap; that hear, touch and see; rocks that can look out into the vastness and grasp for an understanding of ourselves and the universe that made us.
In this book we will explore the nature of life and ask what animates living organisms. What is, in the words of Dylan Thomas, ‘The force that through the green fuse drives the flower’? To understand the nature of this force, we must explore life at its most fundamental level, examining the two key events in Earth’s history that made the act of writing these lines possible. The first took place nearly four billion years ago, when life emerged. The second took much longer. Living creatures had been swimming in Earth’s oceans for three and a half billion years before the mammals gave rise to a family of bipeds, the primates, and from their ranks emerged a thinking ape, man. Since that time, several million years ago, the mind of man has unravelled many mysteries concerning the universe’s workings. We watch the sun setting every evening and are confident of its rise the next day, because we know its rising and setting are caused by Earth spinning on its axis. We can look up into the night sky and know that each star is a sun like our own. Scientists can calculate the energy released from the fusion of hydrogen nuclei inside our sun, or use powerful telescopes to witness the birth of galaxies that existed billions of years ago. Remarkably however, the two key events that made our own existence possible – the emergence first of life and then of consciousness – still remain mysterious. Although we know now a great deal concerning both the workings of living cells and (though far less) the human brain, the spontaneous appearance of both phenomena remains a puzzle. This book’s aim is to explore this puzzle and examine the startling proposition that we already hold a missing piece of the puzzle. We will discover how, with this piece in place, enigmatic phenomena can be explained and light shed on life’s central mysteries.
To approach the answer, we must first understand the meaning of the question. What is life? What is the force that through the green fuse drives the flower? Living today inside the concrete and glass walls of urban environments, it is easy to ignore life’s astonishing nature. Our perceptions are formed within homes shared with domesticated animals and potted plants and only slightly modified during weekend excursions across forest-denuded hillsides or through fields of monoculture crops. The forces of the natural world are often perceived as problematic: mould creeping over damp patches of bathroom walls, weeds encroaching on flowerbeds or ants invading kitchens. But it is in our encounters with these weeds and vermin that we glimpse nature’s true character. The moulds, plants and insects invading our homes and gardens are heirs of the creatures that first colonized the oceans and proceeded to relentlessly invade every habitable niche on this planet. If we are to unravel life’s secrets, it is their nature we need to understand.
One starting point is to examine how our ancestors, unsullied by the preconceptions of our civilization, viewed their world. Man first walked on the planet several million years ago. For almost all subsequent history, man’s chief preoccupation was the gathering, snaring and hunting of nature’s bounty. Our ancestors’ day-to-day survival was contingent upon the ebb and flow of life through their landscape: the migration of herbivores, the ripening of fruit and the spawning of fish. To survive, man needed to exploit these resources, and he learned to lay traps to catch animals, grind tools to butcher them, fashion clothes from their skins and kindle fires to cook them. But the same reasoning that endowed Homo sapiens with his unique skills to exploit nature, condemned him to remain for ever discontented with mere exploitation. Man sought to understand his world. Our ancestors held nature’s procreative power in awe, worshipping gods and goddesses whom they represented as sexually exaggerated figures – such as often heavily pregnant ‘Mother Earth’ figures or priapic males. Life’s vitality was celebrated in the vigorous images of bison and reindeer that leap across the cave walls at Lascaux or Altamira. These two aspects of nature – its energy and its capacity to reproduce – clearly impressed our ancestors, and still remain mysteries of life today.
Much of subsequent history is a reflection of the changing pattern of man’s interaction with the rest of the natural world. After several million years as a hunter and gatherer, man turned his skills towards manipulating nature. About ten thousand years ago – apparently independently in several parts of the world – people discovered how to cultivate grain and domesticate wild animals. Man thereby freed himself from a perpetual march in search of a moving food supply, and established settlements. A surplus of plentiful crops allowed the rise of an aristocracy, who hoarded and guarded this resource. This enabled many to escape from the drudgery of tilling the land altogether. Warriors and servants could be paid from the royal coffers and thus persuaded to protect the lands of their kings, to build walls or erect palaces and temples. The level of social organization required for these tasks was previously unknown amongst the hunter-gatherer communities and a remarkable invention was devised to keep track of their transactions. Symbols and signs were scratched onto clay tablets, representing bales of wheat, jugs of beer, or heads of cattle, either paid to, or received from, the king’s subjects. From these modest beginnings, writing developed. Information and ideas encoded on baked clay tablets could be faithfully transmitted across space and through time. Fortunately, those ancient scribes turned from recording the jugs of beer paid to their workmen to more interesting information: the beliefs, hopes and dreams of their people. The stories they tell are our first detailed records of man’s thoughts concerning life.
The earliest creation myths record the belief that life represented the fundamental creative power in the universe. The universe’s origin was itself often held to be some form of birth. In the Orphic creation myth, black-winged Night laid a silver egg in the womb of darkness; Eros was hatched from the egg and set the universe in motion. Similarly, the Rig-Veda’s Hindu creation myth describes the birth of the first being from a golden egg, all other deities springing from his limbs. The authors of these myths were mostly farmers, and much mythology revolved around the seasonal cycles. They sowed their fields with seed and marvelled at its power to sprout and grow into luxuriant crops. Their myths reveal that they generally traced this power to a divine source. The ancient Sumerian sky-god Enlil is described as:
The lord (Enlil) who brings forth what is useful
The lord whose decisions are unalterable
Enlil, who brings forth the seed from the earth1
Life is clearly considered to be apart from the rest of creation, its vitality a channelling of divine power. The cycle of growth, death and rebirth was, within agrarian societies, almost universally attributed to the death and rebirth of a fertility god or goddess. Thus, Osiris, the Egyptian god of vegetation, was said to have been slain and dismembered by his brother. His wife, Isis, gathered together his body’s scattered fragments and with magical ceremonies restored him to life. The Egyptian reapers chanted a dirge for the death of Osiris and prayed to Isis for his return. Similarly, the descent of the Babylonian goddess Ishtar into the netherworld echoed the desolation of the dry season; her subsequent rescue and emergence restored the growing season’s fertility. The cycles of human fertility were seen as under divine control. The coincidental synchronicity between the moon’s waxing and waning and the female menstrual cycle was attributed to the influence of a lunar deity, such as the Roman goddess Juno, to whom barren women would pray. The (less obvious) role of male reproductive organs in procreation was also recognized. Thus Aphrodite was born from Uranus’ testicles which had been flung into the sea by his son Cronos, who had castrated him with a saw-toothed sickle.
Each tale records a belief that life contained a divine or magical principle, absent from the inanimate world. To create life, this vital principle needed to be added, often from a living source, such as blood. Thus, in the Babylonian Poem of Creation, it is related how man was fashioned from clay mixed with the blood of a god:
‘Let him be made of clay animated by blood’.2
Although, today, it is easy to dismiss these myths, they are in reality man’s earliest attempts to find answers to the questions still plaguing us – they are the first theories of everything. Today we know where the sun goes at night and why spring follows winter. But much of our knowledge is received wisdom and this wisdom of ages was hard-won. How many of us would be able to prove that the Earth revolves around the sun, when any fool can see the sun rise in the morning, travel across the sky and descend below the horizon at night?
The dawn of the rational approach to understanding our world is usually attributed to the intellectual revolution of the sixth and fifth centuries BC which gave rise to the ancient Greek civilization. One of the earliest philosophers was Thales (born about 600BC). Although his writings have been lost, several of his sayings have survived, including, ‘the lodestone has life, or soul, as it is able to move iron’. This short phrase implies a complex set of beliefs. Firstly, that the ability to initiate movement is a key attribute of life. This is a concept we will return to as, in modern molecular interpretation, it forms a cornerstone of this book. Secondly, that this ability to make movement betrays the presence of a ‘soul’. Like the mythmakers before him, Thales considered that the phenomenon of life pointed to the presence of supernatural forces. Finally, the equation: ability to initiate movement = life = soul, has been taken to the extreme of attributing the property of life to a variety of inanimate objects, such as a magnet (lodestone). This reflects a widespread tradition of pantheism in the ancient world. As the third-century Roman chronicler, Diogenes Laertius put it, ‘the world was animate and full of divinities’.
The ancient world’s greatest biologist was undoubtedly Aristotle. Sadly, our received image of him is frozen by those chalk-white busts of venerable bearded philosophers who seem to stare into a perfect world of spheres and equilateral triangles. But Aristotle’s vision was far more earth-bound than that. Like his predecessor, Heraclitus, he believed that ‘knowledge enters through the door of the senses’, and as a young man he spent several years living on Lesbos, studying marine life. His biological writings betray the acute observation and attention to detail which is the hallmark of all great naturalists.
‘Animals also which fly and those which swim, fly by straightening and bending their wings and swim with their fins, some fish having four fins and others, mainly those which are of a more elongated form (eels for example), having two fins. The latter accomplish the rest of their movement by bending themselves in the rest of their body, as a substitute for the second pair of fins. Flatfish use their two fins and the flat part of their body, instead of the second pair.3
Instead of the venerable sage, we should imagine a younger Aristotle diving into the Aegean’s clear waters to retrieve starfish, crabs and anemones, to study their form or observe their behaviour.
‘The sea-urchin has a better defence system than any of them: he has a good thick shell all round him fortified by a palisade of spine.’4
Any lover of rock-pools will recognize an ally in Aristotle’s writing. But the scientist in Aristotle was not content to describe nature; he needed to explain it. Perhaps, later in the day, he would set light to driftwood to cook his catch and ponder on the ephemeral quality he roasted out of the living flesh. Like Thales, Aristotle considered that the essential quality of living creatures was that they possessed their own internal will and this allowed creatures to initiate independent movement.
‘For nature is in the same genus as potency, for it is a principle of movement – not however in something else but the thing itself.’5
To Aristotle, living creatures were made distinct by their ability to move themselves. His concept of movement was more subtle than simple locomotion. The shoreline of Lesbos, had taught him that clams, anemones, or indeed simple seaweed moved very little (except when pulled by the waves and the tide), but were still very much alive. To Aristotle, there were six forms of movement: generation, destruction, increase, diminution, alteration and change of place. This broader conception of movement actually reflects a more general meaning to the verb, to move, than our modern usage, one that remains apparent when we say that we found a particular piece of music to be deeply moving, or when a motion is passed by a debating society. Our modern usage is rooted in Newtonian mechanics, and a better translation of Aristotle’s concept of movement would be the term action, a word with a precise, useful meaning in modern physics, to which we will return. The essential point of Aristotle’s argument is that all living organisms possess an internal will that allows them to initiate and perform actions such as growth, regeneration, procreation and movement. Aristotle, like Thales, ascribed this internal will – the cause of independent action – to the eidos, the soul or psyche: ‘The soul creates movement’.6
It would be mistaken to equate Aristotle’s eidos too closely with the Christian soul. He believed all animals and plants were endowed with a ‘soul’ capable of initiating movement. To Aristotle, this soul was clearly a much more functional entity than the Christian moral guardian. However, only man possessed the highest form of soul: the source of reasoning and moral judgement.
Aristotle’s writings, lost and then found by the Arabs and passed from them to mediaeval Europe, were to form the basis of Western thinking throughout the Middle Ages. The Aristotelian concept of a soul was translated into the vitalist approach to biology. To the vitalists, life possessed a mysterious property, the élan vital, or living spirit, whose nature lay beyond the realms of science. In the words of Joyce Kilmer:
Poems are made by fools like me
But only God can make a tree.
The vitalist tradition survived until the twentieth century in many biological writings. I remember biology textbooks that described the mysterious living protoplasm inside cells with the same awe and mystery that mystics describe the aura. However, the concept has been in retreat since the dawn of the Age of Reason in the seventeenth and eighteenth centuries, and no serious scientist subscribes to it today. The opposing camp, the Mechanists, were inspired by the machines that were, by then, revolutionizing the world; and they believed that life, like machines, could be understood in terms of the laws of chemistry and physics. They rejected the vitalist argument that life required special laws beyond conventional science. René Descartes (1596–1650) was a founding figure who proposed that animals were mere automata, in principle no different from the clockwork figures which played music or danced at fairgrounds. Descartes was however unwilling to accept the full implications of mechanism and reserved man a special place amongst God’s creations. He considere...

Table of contents

  1. Title Page
  2. Copyright
  3. Praise
  4. Dedication
  5. Contents
  6. 1: What is Life?
  7. 2: The Limits of Life
  8. 3: Life’s Biggest Action
  9. 4: How Did We Get Here?
  10. 5: Life’s Actions
  11. 6: What Makes Bodies Move?
  12. 7: What is Quantum Mechanics?
  13. 8: Measurement and Reality
  14. 9: What Does It All Mean?
  15. 10: The Beginning
  16. 11: The Quantum Cell
  17. 12: Quantum Evolution
  18. 13: Mind and Matter
  19. Bibliography
  20. Index
  21. Acknowledgements
  22. About the Author
  23. Notes
  24. About the Publisher