Basic Principles of Formulation Types
eBook - ePub

Basic Principles of Formulation Types

  1. 317 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Basic Principles of Formulation Types

About this book

Volume 2 of Formulation Science and Technology is a survey of the different types of formulations used in the chemical industry and offers numerous real-world examples of foams, gels, latexes etc. It offers in-depth explanations for research scientists, universities, and industry practitioners looking for a complete understanding of which type formulation works best for a certain application and why.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Basic Principles of Formulation Types by Tharwat F. Tadros in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Chemistry. We have over one million books available in our catalogue for you to explore.

Information

Publisher
De Gruyter
Year
2018
eBook ISBN
9783110587579
Edition
1

1Formulation of solid/liquid dispersions (suspensions)

1.1Introduction

Many chemicals are formulated as solid/liquid dispersions (to be referred to as suspensions), e.g. paints, dyestuffs, paper coatings, printing inks, agrochemicals, pharmaceuticals, cosmetics, food products, detergents, ceramics, etc. The powder particles can be hydrophobic, e.g. organic pigments, agrochemicals, ceramics or hydrophilic, e.g. silica, titania, clays [15]. The liquid can be aqueous or nonaqueous. The average particle size of the suspension can be within the colloid range (1 nm–1 μm) or outside the colloid range (> 1 μm). Suspensions with dimension within the colloid range are referred to as colloidal suspensions. In contrast, suspensions with dimensions outside the colloid range are generally referred to as coarse suspensions. They are to be distinguished from colloidal suspensions in the sense that the particles of coarse suspensions settle to the bottom of the container (as a result of the gravitational field on the particles) whereas with colloidal suspensions, with particle density not significantly larger than that of the medium, the very mild mixing produced by ambient thermal fluctuations and/or Brownian motion can keep the particles uniformly dispersed in the continuous medium [1]. The formulation of suspensions and maintenance of their physical stability over long periods of time under various conditions, e.g. temperature variation, transport, etc. still remains a challenging problem to the formulation scientist or chemical engineer. This requires understanding of the various interfacial phenomena involved in their preparation and stabilization [6, 7].
The concentration of a suspension is described by its volume fraction ϕ, namely the ratio between the total volume of particles to the volume of the suspension. The value of ϕ above which a suspension may be considered “dilute”, “concentrated” or “solid” can be defined from a consideration of the balance between the particle translational motion (Brownian diffusion) and interparticle interaction [2, 8]. If Brownian diffusion predominates over the imposed interparticle interaction, the suspension may be described as “dilute”. In this case the particle translational motion is large and only occasional contacts may occur between the particles which are then separated by the Brownian force. The particle interactions can be represented by two-body collisions. This “dilute” suspension has generally time-independent properties and if the particle size is within the colloid range and the density difference between the particles is very small, no gravitational sedimentation of particles occurs and the system maintains its properties over long periods of time. These “dilute” suspensions show Newtonian flow, i.e. their viscosity is independent of the applied shear rate [9]. In contrast, if interparticle interaction predominates over Brownian diffusion, i.e. the interparticle distance h becomes much smaller than the particle radius, the system may be described as a “solid” suspension. In this case the particles may vibrate with a distance h that is much smaller than the particle radius. The interaction produces a specific order between the particles and a highly developed structure is reached. The resulting “solid” suspension becomes predominantly elastic with very little energy dissipation during flow [9]. Again, the properties of these elastic systems are time-independent. In between the two extremes one ma...

Table of contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Preface
  5. Contents
  6. 1 Formulation of solid/liquid dispersions (suspensions)
  7. 2 Formulation of liquid/liquid dispersions (emulsions)
  8. 3 Formulation of foams
  9. 4 Formulation of gels
  10. 5 Formulation of polymer colloids (latexes)
  11. 6 Formulation of microemulsions
  12. 7 Controlled-release formulations
  13. 8 Solid dosage formulations
  14. 9 Assessments of the stability of formulations
  15. Index