Plows, Plagues, and Petroleum
eBook - ePub

Plows, Plagues, and Petroleum

How Humans Took Control of Climate

William F. Ruddiman

Share book
  1. 240 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Plows, Plagues, and Petroleum

How Humans Took Control of Climate

William F. Ruddiman

Book details
Book preview
Table of contents
Citations

About This Book

The impact on climate from 200 years of industrial development is an everyday fact of life, but did humankind's active involvement in climate change really begin with the industrial revolution, as commonly believed? Plows, Plagues, and Petroleum has sparked lively scientific debate since it was first published--arguing that humans have actually been changing the climate for some 8, 000 years--as a result of the earlier discovery of agriculture.The "Ruddiman Hypothesis" will spark intense debate. We learn that the impact of farming on greenhouse-gas levels, thousands of years before the industrial revolution, kept our planet notably warmer than if natural climate cycles had prevailed--quite possibly forestalling a new ice age. Plows, Plagues, and Petroleum is the first book to trace the full historical sweep of human interaction with Earth's climate. Ruddiman takes us through three broad stages of human history: when nature was in control; when humans began to take control, discovering agriculture and affecting climate through carbon dioxide and methane emissions; and, finally, the more recent human impact on climate change. Along the way he raises the fascinating possibility that plagues, by depleting human populations, also affected reforestation and thus climate--as suggested by dips in greenhouse gases when major pandemics have occurred. While our massive usage of fossil fuels has certainly contributed to modern climate change, Ruddiman shows that industrial growth is only part of the picture. The book concludes by looking to the future and critiquing the impact of special interest money on the global warming debate. In the afterword, Ruddiman explores the main challenges posed to his hypothesis, and shows how recent investigations and findings ultimately strengthen the book's original claims.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Plows, Plagues, and Petroleum an online PDF/ePUB?
Yes, you can access Plows, Plagues, and Petroleum by William F. Ruddiman in PDF and/or ePUB format, as well as other popular books in Sciences physiques & Géologie et sciences de la Terre. We have over one million books available in our catalogue for you to explore.

Information

PART ONE
What Has Controlled Earth’s Climate?
WHAT HAS CONTROLLED EARTH’S CLIMATE?
IMAGINE EARTH VIEWED from a satellite. Blue oceans cover more than two-thirds of the planet and brown or green land the rest. White ice sheets over a mile thick bury a small fraction of the land (Antarctica and Greenland). Whitish sea ice forms a cap a few feet thick over the polar oceans, and its seasonal fluctuations in the two hemispheres occur at exactly opposite tempos (one large when the other is small). Surrounding everything is a thin blue envelope of atmosphere with swirls of clouds.
In comparison to these fundamental and massive parts of the natural climate system, the largest structures built by humans are insignificant to or even undetectable by the unaided eye. Pyramids, dams, and roads are invisible from space without high-powered telescopes. On the side of Earth lying in the dark of night, even the brightly lit cities are just tiny islands of light.
From this perspective, the possibility that humans could have any major impact on the workings of these vast parts of the climate system sounds ridiculous. How could we possibly cause changes in the size of these immense regions of blue and green and white? Yet we are. No credible climate scientist now doubts that humans have had an effect on Earth’s climate during the last two centuries, primarily by causing increases in the concentrations of greenhouse gases like carbon dioxide and methane in the atmosphere. These gases trap radiation emitted from Earth’s surface after it has been heated by the Sun, and the added heat retained in Earth’s atmospheric envelope makes its climate warmer.
Because increases in both greenhouse gases and Earth’s temperature during the last century have been measured, the so-called global warming debate is not about whether humans are warming climate or whether we will warm climate in future decades—we are warming it, and we will warm it more in future decades as greenhouse-gas concentrations rise.
The only issue under serious debate is: By how much? Will we make Earth’s climate only slightly warmer, a change that might be hardly noticeable? Or will we alter the climate system in much more extensive ways, for example by melting most of that white sea-ice cover near the North Pole and turning the Arctic to an ocean blue? For now, the answer to this question of “how-much” is not so clear.
Another part of the global-warming debate is whether these changes will be “good” or “bad.” This question has many answers, all of which turn on the value system of the person asking it. The world is complicated; no single answer of good or bad is sufficient when the many complexities of such an issue are taken into account. But most of the story this book has to tell is not about highly charged political or media debates under way today and forgotten a few years hence. The focus here is on what we can learn from the past.
For most of the time that human beings and our recognizable ancestors lived on Earth, we did not affect climate. Few in number, and moving constantly in search of food and water, our Stone Age predecessors left no permanent “footprints” on the landscape for several million years. Throughout this immensely long span of time, climate changed for natural reasons, primarily related to small cyclical changes in Earth’s orbit around the Sun. Nature was in control of climate.
But the discovery of agriculture nearly 12,000 years ago changed everything. For the first time, humans could live settled lives near their crops, rather than roaming from area to area. And gradually, the improved nutrition available from more dependable crops and livestock began to produce much more rapid increases in population than had been possible in the earlier hunting-and-gathering mode of existence. As a result, the growing human settlements began to leave a permanent footprint of ever-increasing size on the land.
If you could watch a time-lapse film showing Earth’s surface since agriculture began, you would see a subtle but important change spread across southern Eurasia during the last several thousand years. In China, India, southern Europe, and northernmost Africa, you would see darker shades of green slowly turning a lighter green or a greenish brown. In these areas, the first villages, towns, and cities were being built, and vast areas of dark-green forest were slowly being cut for agriculture, cooking, and heating, leaving behind the lighter-green hues of pastures or the green-brown of croplands.
Until very recently, scientists thought that humans first began altering climate some 100 to 200 years ago, as a direct result of changes brought about by the gassy effusions of the Industrial Revolution. But here I propose a very different view: the start of the switch-over from control of climate by nature to control by humans occurred several thousand years ago, and it happened as a result of seemingly “pastoral” innovations linked to farming. Before we built cities, before we invented writing, and before we founded the major religions, we were already altering climate. We were farming.
Chapter One
CLIMATE AND HUMAN HISTORY
MOST SCIENTISTS accept the view that human effects on global climate began during the 1800s and have grown steadily since that time. The evidence supporting this view looks quite solid: two greenhouse gases (carbon dioxide, or CO2, and methane, or CH4) that are produced both in nature and by humans began unusual rises like the pattern shown in figure 1.1A. Both the rate of change and the high levels attained in the last 100 to 200 years exceed anything observed in the earlier record of changes from ancient air bubbles preserved in ice cores. Because greenhouse gases cause Earth’s climate to warm, these abrupt increases must have produced a warming.
But one aspect of the evidence shown in figure 1.1A is deceptive. Magicians use a form of misdirection in which flashy movements with one hand are used to divert attention from the other hand, the one slowly performing the magic trick. In a sense, the dramatic change since 1850 is exactly this kind of misdirection. It distracts attention from an important rise in gas concentrations that was occurring during the centuries before the 1800s. This more subtle change, happening at a much slower rate but extending very far back in time, turns out to be comparably important in the story of humanity’s effects on climate.
I propose that the real story is more like the one shown in figure 1.1B. Slower but steadily accumulating changes had been underway for thousands of years, and the total effect of these earlier changes nearly matched the explosive industrial-era increases of the last century or two. Think of this as like the fable of the tortoise and hare: the hare ran very fast but started so late that it had trouble catching the tortoise. The tortoise moved at a slow crawl but had started early enough to cover a lot of ground.
The tortoise in this analogy is agriculture. Carbon dioxide concentrations began their slow rise 8,000 years ago when humans began to cut and burn forests in China, India, and Europe to make clearings for croplands and pastures. Methane concentrations began a similar rise 5,000 years ago when humans began to irrigate for rice farming and tend livestock in unprecedented numbers. Both of these changes started at negligible levels, but their impact grew steadily, and they had a significant and growing impact on Earth’s climate throughout the long interval within which civilizations arose and spread across the globe.
image
1.1. Two views of the history of human impacts on Earth’s climate and environment. A: Major impacts began during the industrial era (the last 200 years). B: The changes of the industrial era were preceded by a much longer interval of slower, but comparably important, impacts.
For most people (including many scientists), the natural first reaction to this claim of a very early human impact on climate is disbelief. How could so few people with such primitive technologies have altered Earth’s climate so long ago? How do we know that the “tortoise” version shown in figure 1.1B is correct? Convergent evidence from two areas of scientific research in which major revolutions of knowledge have occurred in the last half century—climatic history and early human history—provides the answer to these questions and the demonstration of an early human impact on climate.
When I started my graduate student career in the field of climate science almost 40 years ago, it really was not a “field” as such. Scattered around the universities and laboratories of the world were people studying pollen grains, shells of marine plankton, records of ocean temperature and salinity, the flow of ice sheets, and many other parts of the climate system, both in their modern form and in their past manifestations as suggested by evidence from the geologic record. A half-century before, only a few dozen people were doing this kind of work, mostly university-based or self-taught “gentleman” geologists and geographers in Western Europe and the eastern United States. Now and then, someone would organize a conference to bring together 100 or so colleagues and compare new findings across different disciplines.
Today, this field has changed beyond recognition. Thousands of researchers across the world explore many aspects of the climate system, using aircraft, ships, satellites, innovative chemical and biological techniques, and high-powered computers. Geologists measure a huge range of processes on land and in the ocean. Geochemists trace the movement of materials and measure rates of change in the climate system. Meteorologists use numerical models to simulate the circulation of the atmosphere and its interaction with the ocean. Glaciologists analyze how ice sheets flow. Ecologists and biological oceanographers investigate the roles of vegetation on land and plankton in the ocean. Climatologists track trends in climate over recent decades. Hundreds of groups with shorthand acronyms for their longer names hold meetings every year on one or another aspect of climate. I am certain there are now more groups with acronyms in the field of climate science than there were people when I began.
Studies of Earth’s climatic history utilize any material that contains a record of past climate: deep-ocean cores collected from sea-going research vessels, ice cores drilled by fossil-fuel machine power in the Antarctic or Greenland ice sheets or by hand or solar power in mountain glaciers; soft-sediment cores hand-driven into lake muds; hand-augered drills that extract thin wood cores from trees; coral samples drilled from tropical reefs. The intervals investigated vary from the geological past many tens of millions of years ago to the recent historical past and changes occurring today.
These wide-ranging investigations have, over the last half-century or so, produced enormous progress in understanding climate change on every scale. For intervals lying in the much more distant past, tens or hundreds of millions of years ago, changes in global temperature, regional precipitation, and the size of Earth’s ice sheets have been linked to plate-tectonic reorganizations of Earth’s surface such as movements of continents, uplift and erosion of mountains and plateaus, and opening and closing of isthmus connections between continents. Over somewhat shorter intervals, cyclic changes in temperature, precipitation, and ice sheets over tens of thousands of years have been linked to subtle changes in Earth’s orbit around the Sun, such as the tilt of its axis and the shape of the orbit. At still finer resolution, changes in climate over centuries or decades have been tied to large volcanic explosions and small changes in the strength of the Sun.
Some scientists regard the results of this ongoing study of climate history as the most recent of four great revolutions in earth science, although advances in understanding climate have come about gradually, as in most of the earlier revolutions. In the 1700s James Hutton concluded that Earth is an ancient planet with a long history of gradually accumulated changes produced mainly by processes working at very slow rates. Only after a century or more did Hutton’s concept of an ancient planet displace the careful calculations of an archbishop in England who had added up the life spans of the patriarchs in the Bible and calculated that Earth was formed on October 26 in 4004 B.C. Today chemistry, physics, biology, and astronomy have all provided critical evidence in support of the geology-based conclusion that our Earth is very old indeed, in fact several billions of years old.
In 1859 Charles Darwin published his theory of natural selection, based in part on earlier work showing that organisms have appeared and disappeared in an ever-changing but well-identified sequence throughout the immense interval of time for which we have the best fossil record (about 600 million years). Darwin proposed that new species evolve as a result of slow natural selection for attributes that promote reproduction and survival. Although widely accepted in its basic outline, Darwin’s theory is still being challenged and enlarged by new insights. For example, only recently has it become clear that very rare collisions of giant meteorites with Earth’s surface also play a role in evolution by causing massive extinctions of most living organisms every few hundred million years or so. Each of these catastrophes opens up a wide range of environmental niches into which the surviving species can evolve with little or no competition from other organisms (for a while).
The third great revolution, the one that eventually led to the theory of plate tectonics, began in 1912 when Alfred Wegener proposed the concept of continental drift. Although this idea attracted attention, it was widely rejected in North America and parts of Europe for over 50 years. Finally, in the late 1960s, several groups of scientists realized that marine geophysical data that had been collected for decades showed that a dozen or so chunks of Earth’s crust and outer mantle, called “plates,” must have been slowly moving across Earth’s surface for at least the last 100 million years. Within 3 or 4 years, the power of the plate tectonic theory to explain this wide range of data had convinced all but the usual handful of reflex contrarians that the theory was basically correct. This revolution in understanding is not finished; the mechanisms that drive the motions of the plates remain unclear.
As with the three earlier revolutions, the one in climate science has come on slowly and in fact is still under way. Its oldest roots lie in field studies dating from the late 1700s and explanatory hypotheses dating from the late 1800s and early 1900s. Major advances in this field began in the late 1900s, continue today, and seem destined to go on for decades.
Research into the history of humans is not nearly as large a field as climate science, but it attracts a nearly comparable amount of public interest. This field, too, has expanded far beyond its intellectual boundaries of a half-century ago. At that time, the fossil record of our distant precursors was still extremely meager. Humans and our precursors have always lived near sources of water, and watery soils contain acids that dissolve most of the bones overlooked by scavenging animals. The chance of preservation of useful remains of our few ancestors living millions of years ago is tiny. When those opposed to the initial Darwinian hypothesis of an evolutionary descent from apes to humans cited “missing links” as a counterargument, their criticisms were at times difficult to refute. The gaps in the known record were indeed immense. Now the missing links in the record of human evolution are at most missing minilinks. Gaps that were as much as a million years in length are generally now less than one-tenth that long, filled in by a relatively small number of anthropologists and their assistants doggedly exploring outcrops in Africa and occasionally stumbling upon fossil skeletal remains.
Suppose that skeletal remains are found in ancient lake sediments sandwiched between two layers of lava that have long since turned into solid rock (basalt). The basalt layers can be dated by the radioactive decay of key types of minerals enclosed within. If the dating shows that the two layers were deposited at 2.5 and 2.3 million years ago, respectively, then the creatures whose remains were found in the lake sediments sandwiched in between must have lived within that time range. With dozens of such dated skeletal remains found over the last half-century, the story of how our remote precursors changed through time has slowly come into focus.
Even though the details of the pathway from apes to modern humans still need to be worked out, the basic trend is clear, and no credible scientist that I know of has any major doubts about the general sequence. Creatures intermediate between humans and apes (australopithecines, or “southern apes”) lived from 4.5 to 2.5 million years ago, around which time they gave way to beings (the genus Homo, for “man”) that we would consider marginally human, but not fully so. Today anthropologists refer to everything that has followed since 2.5 million years ago as the hominid (or hominine) line. By 100,000 years ago, or slightly earlier, fully modern humans existed. This long passage was marked by major growth in brain size; progressively greater use of stone tools for cutting, crushing, and digging; and later by control of fire.
Knowledge of the more recent history of humans has increased even more remarkably. Decades ago the field of archeology was focused mainly on large cities and buildings and on the cultural artifacts found in the tombs of the very wealthy; today this field encompasses or interacts with disciplines such as historical ecology and environmental geology that explore past human activities across the much larger fraction of Earth’s surface situated well away from urban areas. Radiocarbon dating (also based on radioactive decay) has made it possible to place even tiny organic fragments with a time framework. The development of cultivated cereals in the Near East nearly 12,000 years ago and their spread into previously forested regions of Europe from 8,000 to 5,500 years ago can be dated from trace amounts of crops found in lake sediments. On other research fronts, archeologists unearthing mud-brick and stone foundations of houses have been able to estimate population densities thousands of years ago. Others examining photos taken from the air in early morning at low sun angles find distinct patterns of field cultivation created by farmers centuries before the present. Geochemists can tell from the kind of carbon preserved in the teeth and bones of humans and other animals the mixture of plants ...

Table of contents