
Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces
- 440 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces
About this book
This book makes a significant inroad into the unexpectedly difficult question of existence of Fréchet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. Because the question turns out to be closely related to porous sets in Banach spaces, it provides a bridge between descriptive set theory and the classical topic of existence of derivatives of vector-valued Lipschitz functions. The topic is relevant to classical analysis and descriptive set theory on Banach spaces. The book opens several new research directions in this area of geometric nonlinear functional analysis.
The new methods developed here include a game approach to perturbational variational principles that is of independent interest. Detailed explanation of the underlying ideas and motivation behind the proofs of the new results on Fréchet differentiability of vector-valued functions should make these arguments accessible to a wider audience. The most important special case of the differentiability results, that Lipschitz mappings from a Hilbert space into the plane have points of Fréchet differentiability, is given its own chapter with a proof that is independent of much of the work done to prove more general results. The book raises several open questions concerning its two main topics.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Title
- Copyright
- Dedication
- Contents
- 1 Introduction
- 2 Gâteaux differentiability of Lipschitz functions
- 3 Smoothness, convexity, porosity, and separable determination
- 4 ε-Fréchet differentiability
- 5 Γ-null and Γn-null sets
- 6 Fréchet differentiability except for Γ-null sets
- 7 Variational principles
- 8 Smoothness and asymptotic smoothness
- 9 Preliminaries to main results
- 10 Porosity, Γn- and Γ-null sets
- 11 Porosity and ε-Fréchet differentiability
- 12 Fréchet differentiability of real-valued functions
- 13 Fréchet differentiability of vector-valued functions
- 14 Unavoidable porous sets and nondifferentiable maps
- 15 Asymptotic Fréchet differentiability
- 16 Differentiability of Lipschitz maps on Hilbert spaces
- Bibliography
- Index
- Index of Notation