
The Equation that Couldn't Be Solved
How Mathematical Genius Discovered the Language of Symmetry
- 368 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
The Equation that Couldn't Be Solved
How Mathematical Genius Discovered the Language of Symmetry
About this book
What do Bach's compositions, Rubik's Cube, the way we choose our mates, and the physics of subatomic particles have in common? All are governed by the laws of symmetry, which elegantly unify scientific and artistic principles. Yet the mathematical language of symmetry-known as group theory-did not emerge from the study of symmetry at all, but from an equation that couldn't be solved. For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named Évariste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory. The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Colophon
- Also by Mario Livio
- Title Page
- Copyright
- Dedication
- Contents
- Preface
- 1. Symmetry
- 2. eyE s’dniM eht ni yrtemmyS
- 3. Never Forget This in the Midst of Your Equations
- 4. The Poverty-Stricken Mathematician
- 5. The Romantic Mathematician
- 6. Groups
- 7. Symmetry Rules
- 8. Who’s the Most Symmetrical of Them All?
- 9. Requiem for a Romantic Genius
- Appendix 1. Card Puzzle
- Appendix 2. Solving a System of Two Linear Equations
- Appendix 3. Diophantus’s Solution
- Appendix 4. A Diophantine Equation
- Appendix 5. Tartaglia’s Verses and Formula
- Appendix 6. Adriaan van Roomen’s Challenge
- Appendix 7. Properties of the Roots of Quadratic Equations
- Appendix 8. The Galois Family Tree
- Appendix 9. The 14–15 Puzzle
- Appendix 10. Solution to the Matches Problem
- Notes
- References
- Credits
- Index