CHAPTER 1
Principles of Green Food Processing (Including Lifecycle Assessment and Carbon Footprint)
G. J. Thomaa, S. W. Ellsworth,b and M. J. Yan,c
a Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
b Department of Food Science, University of Arkansas, Fayetteville, AR 72701, USA
c School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland
*Email:
[email protected] 1.1 Introduction
The global food and agricultural sectors are facing numerous pressures, including the burgeoning global population, the expanding middle class and the increasing desire of more people to have high-quality, low-cost food.1 Numerous studies have shown that the main environmental hotspots within the food supply chain are associated with upstream activities (agricultural production, cultivation of crops and animal husbandry) and as a result have received the most attention from the consuming public, governmental organizations and non-governmental organizations (NGOs). These studies suggest that 70โ90% of most environmental impacts in a full supply chain assessment can be attributed to the primary production phase; however, many of the same studies point to the food processing and manufacturing stage of the supply chain as being responsible for 10โ20% of supply chain impact.2โ4 Also, although it is tempting to focus only on those upstream activities where the majority of impact arises, sustainability cannot be achieved by focusing on those activities alone, but must also identify opportunities and implement improvements at later stages of the supply chain. It is for that reason that this book is an especially strong addition to the literature for its focus on the food processing sector and the technologies and opportunities that exist for improvement of the environmental performance of food supply and improving food security.
The food manufacturing industry has traditionally held the role of ensuring food safety, regulatory compliance (for example, nutritional labeling), marketing and profitability. More recently, an additional layer of providing both information and documenting progress towards a sustainable food supply has been added. It should be clear that concerns over environmental sustainability of the food system will have secondary importance to the sector's traditional functions: unsafe, but environmentally friendly products will never be marketed. Hence the context of this chapter is to define the available operating space and useful techniques for understanding the role that environmental sustainability has in the food processing sector.
There is a consensus that the assessment of sustainability requires a holistic perspective of the system being evaluated. This includes the full supply chain, from cradle to grave, in addition to a full complement of environmental indicators. The cradle-to-grave perspective includes all activities necessary for the production of the item under study, extending back in the supply chain to the original extraction of resources. This means, for example, that coal mining and transport to the power plant to produce electricity for pumping or refrigeration are included. In addition, processes associated with consumption and end-of-life treatment are included. An example of the importance of including the full supply chain is in the evaluation of food packaging. One role of packaging is protection of the product, which reduces loss. Light weighting a package will make the package itself more sustainable, but if it leads to even a slight increase in food loss, the overall effect would very likely be a reduction in the overall sustainability of the system because of the relatively large impacts associated with the production of the food itself. By adopting a system perspective, tradeoffs between supply chain stages can be identified, which helps to avoid unintended consequences. In addition, a range of environmental categories should also be included in the overall assessment. Multiple categories allow the identification of potential tradeoffs between environmental impacts. For example, water use efficiency in a processing facility may be achieved at an additional energy cost and therefore the tradeoff of improved water use comes at the cost of an increased carbon footprint. This highlights the truism that โone size does not fit all.โ For example, in water-scarce regions a higher footprint for global warming may be a necessary and acceptable tradeoff.
1.2 Sustainability Assessment Tools
Sustainability is a complex concept with a deceptively simple definition: to meet the needs of current generations without compromising the ability of future generations to meet their needs. In general, sustainability is considered to have three pillars: social, economic and environmental. The complexity arises in attempting not only to balance environmental tradeoffs as mentioned above, but also to balance these tradeoffs with social and economic values that are deemed important. A major goal of sustainability assessment is therefore to identify the tradeoffs and tensions in the system so that fully informed decisions can be taken in an effort to maintain our collective ability to provide prosperity. Among the tools used for sustainability assessment are lifecycle assessment (LCA), lifecycle costing (LCC), social lifecycle assessment (SLCA), lifecycle sustainability assessment (LCSA), organizational lifecycle assessment (OLCA), environmental risk assessment (ERA) and, in the context of food safety, microbiological risk assessment (MRA). Some of these tools can be used in conjunction with each other or, depending on the needs of the assessment, may be used alone. An emerging paradigm in the context of systems is the so-called circular economy. In this paradigm, there is an explicit and conscious attempt to design products in a manner that makes the utilization of materials at the end of their intended life as raw materials for a subsequent use as streamlined and efficient as possible. Clearly, a fundamental principle of sustainability is resource use efficiency, and in the context of food processing this translates to minimizing energy and water use and food loss while simultaneously producing high-quality, nutritious and safe foods to enhance food security.
The most commonly used tool for system scale assessment of product systems is LCA, which is codified through a series of international standards, including general guidance in addition to specific guides for water footprint and carbon footprint.5โ8 These standards are targeted at providing guidelines for products and services and specifically require a full lifecycle perspective for the reasons outlined above. The International Organization for Standardization (ISO) has not published guidelines at the organizational level; however, the UNEP/SETAC Life Cycle Initiative and World Resource Institute have published guidelines for adapting LCA to the organizational scale.9,10 LCC is a tool to permit the full cost of a product to be considered using the same system as used in LCA. The goal of LCC is to provide a full cost accounting of the production (including delivery and installation), operation and end-of-life costs (decommissioning and disposal) associated with a product. It may additionally include costs of externalities; for example, where environmental pollution costs that are borne by society can be quantified and verified, these externalities can also be included in the cost assessment.11,12 Integration of LCC and LCA remains relatively uncommon, yet is an important area because all enterprises must be both economically and environmentally viable. SLCA arose from efforts within corporate social responsibility initiatives to quantify the societal metrics associated with production and consumption. SLCA is the least developed methodology, but recently guidelines have been published13 and databases created that allow the assessment of social risks in supply chains.14โ18 SLCA attempts to evaluate and quantify socially relevant indicators, including forced child labor, excessive work time, collective bargaining rights, health and safety and human rights. The European Commission, through the European Platform on Life Cycle Assessment, initiated an effort to extend the framework of LCA to incorporate LCC and SLCA to create LCSA. There remain clear challenges associated with collecting and maintaining up-to-date data in the social databases, and for this reason there are significantly fewer publications related to SLCA and LCSA than environmental LCA. For this reason, the remainder of this chapter will focus on environmental sustainability assessment. It should be noted that despite the growing popularity and utility of LCA, there are also some significant limitations to the methodology. For example, in evaluating agricultural production systems, LCA has limited capabilities with regard to the evaluation of ecosystem services, and also has only nascent capabilities for the inclusion of health...