Python Deep Learning Projects
eBook - ePub

Python Deep Learning Projects

9 projects demystifying neural network and deep learning models for building intelligent systems

  1. 472 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Python Deep Learning Projects

9 projects demystifying neural network and deep learning models for building intelligent systems

About this book

Insightful projects to master deep learning and neural network architectures using Python and Keras

Key Features

  • Explore deep learning across computer vision, natural language processing (NLP), and image processing
  • Discover best practices for the training of deep neural networks and their deployment
  • Access popular deep learning models as well as widely used neural network architectures

Book Description

Deep learning has been gradually revolutionizing every field of artificial intelligence, making application development easier.

Python Deep Learning Projects imparts all the knowledge needed to implement complex deep learning projects in the field of computational linguistics and computer vision. Each of these projects is unique, helping you progressively master the subject. You'll learn how to implement a text classifier system using a recurrent neural network (RNN) model and optimize it to understand the shortcomings you might experience while implementing a simple deep learning system.

Similarly, you'll discover how to develop various projects, including word vector representation, open domain question answering, and building chatbots using seq-to-seq models and language modeling. In addition to this, you'll cover advanced concepts, such as regularization, gradient clipping, gradient normalization, and bidirectional RNNs, through a series of engaging projects.

By the end of this book, you will have gained knowledge to develop your own deep learning systems in a straightforward way and in an efficient way

What you will learn

  • Set up a deep learning development environment on Amazon Web Services (AWS)
  • Apply GPU-powered instances as well as the deep learning AMI
  • Implement seq-to-seq networks for modeling natural language processing (NLP)
  • Develop an end-to-end speech recognition system
  • Build a system for pixel-wise semantic labeling of an image
  • Create a system that generates images and their regions

Who this book is for

Python Deep Learning Projects is for you if you want to get insights into deep learning, data science, and artificial intelligence. This book is also for those who want to break into deep learning and develop their own AI projects.

It is assumed that you have sound knowledge of Python programming

Tools to learn more effectively

Saving Books

Saving Books

Keyword Search

Keyword Search

Annotating Text

Annotating Text

Listen to it instead

Listen to it instead

Object Detection Using OpenCV and TensorFlow

Welcome to the second chapter focusing on computer vision in Python Deep Learning Projects (a data science pun to kick us off!). Let's think about what we accomplished in Chapter 8, Handwritten Digits Classification Using ConvNets, where we were able to train an image classifier with a convolutional neural network (CNN) to accurately classify handwritten digits in an image. What was a key characteristic of the raw data, and what was our business objective? The data was less complicated than it could have been because each image only had one handwritten digit in it and our goal was to accurately assign a digital label to the image.
What would have happened if each image had multiple handwritten digits in it? What would have happened if we had a video of the digits? What if we want to identify where the digits are in the image? These questions represent challenges that real-world data embodies, and they drive our data science innovation to new models and capabilities.
Let's expand our line of questions and imagination to the next (hypothetical) business use case for our Python deep learning project, where we're looking to build, train, and test an object detection and classification model to be used by an automobile manufacturer in their new line of self-driving cars. Autonomous vehicles need to have fundamental computer vision capabilities that you and I have organically by way of our physiology and experiential learning. We as humans can examine our field of vision and report whether or not a specific item is present and where in relation to other objects that item (if present) is located. So, if I were to ask you if you see a chicken, you'd likely say no, unless you live on a farm and are looking out your window. But if I ask you if you see a keyboard, you'd likely say yes, and could even say that the keyboard is different from other objects and is in front of the wall before you.
This is no trivial task for a computer. As Deep Learning Engineers, you are going to learn the intuition and model architecture that empowers you to build a powerful object detection and classification engine that we can envision being tested for use in autonomous vehicles. The data inputs that we're going to be working with in this chapter will be much more informationally complex than what we've had in previous projects, and the outcomes when we get them right will be that much more impressive.
So, let's get started!

Object detection intuition

When you need your application to find and name things in an image, you need to build a deep neural network for object detection. The visual field is very complex, and a camera for still images and video captures frames with many, many objects in them. Object detection is used in manufacturing for process automation in production lines; autonomous vehicles sensing pedestrians, other cars, the road, and signs, for example; and, of course, facial recognition. Computer vision solutions based on machine learning and deep learning require you, the Data Scientist, to build, train, and evaluate models that can differentiate one object from another and then accurately classify those detected objects.
As you've seen in other projects we've worked on, CNNs are very powerful models for image data. We need to look at expansions on the basic architecture that has performed so well on a single (still) image with simple information to see what works best for complex images and video.
Progress recently has been made with these networks: Faster R-CNN, region-based fully convolutional network (R-FCN), MultiBox, solid-state drive (SSD), and you only look once (YOLO). We've seen the value of these models in common consumer applications such as Google Photos and Pinterest Visual Search. We are even seeing some of these that are lightweight and fast enough to perform well on mobile devices.
Recent progress in the field can be researched with the following list of references:
  • PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection, arXiv:1608.08021
  • R-CNN: Rich feature hierarchies for accurate object detectio...

Table of contents

  1. Title Page
  2. Copyright and Credits
  3. Dedication
  4. Packt Upsell
  5. Contributors
  6. Preface
  7. Building Deep Learning Environments
  8. Training NN for Prediction Using Regression
  9. Word Representation Using word2vec
  10. Building an NLP Pipeline for Building Chatbots
  11. Sequence-to-Sequence Models for Building Chatbots
  12. Generative Language Model for Content Creation
  13. Building Speech Recognition with DeepSpeech2
  14. Handwritten Digits Classification Using ConvNets
  15. Object Detection Using OpenCV and TensorFlow
  16. Building Face Recognition Using FaceNet
  17. Automated Image Captioning
  18. Pose Estimation on 3D models Using ConvNets
  19. Image Translation Using GANs for Style Transfer
  20. Develop an Autonomous Agent with Deep R Learning
  21. Summary and Next Steps in Your Deep Learning Career
  22. Other Books You May Enjoy

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn how to download books offline
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 990+ topics, we’ve got you covered! Learn about our mission
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more about Read Aloud
Yes! You can use the Perlego app on both iOS and Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app
Yes, you can access Python Deep Learning Projects by Matthew Lamons, Rahul Kumar, Abhishek Nagaraja in PDF and/or ePUB format, as well as other popular books in Informatique & Intelligence artificielle (IA) et sémantique. We have over one million books available in our catalogue for you to explore.