About this book
Get your statistics basics right before diving into the world of data scienceAbout This Book⢠No need to take a degree in statistics, read this book and get a strong statistics base for data science and real-world programs;⢠Implement statistics in data science tasks such as data cleaning, mining, and analysis⢠Learn all about probability, statistics, numerical computations, and more with the help of R programsWho This Book Is ForThis book is intended for those developers who are willing to enter the field of data science and are looking for concise information of statistics with the help of insightful programs and simple explanation. Some basic hands on R will be useful.What You Will Learn⢠Analyze the transition from a data developer to a data scientist mindset⢠Get acquainted with the R programs and the logic used for statistical computations⢠Understand mathematical concepts such as variance, standard deviation, probability, matrix calculations, and more⢠Learn to implement statistics in data science tasks such as data cleaning, mining, and analysis⢠Learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks⢠Get comfortable with performing various statistical computations for data science programmaticallyIn DetailData science is an ever-evolving field, which is growing in popularity at an exponential rate. Data science includes techniques and theories extracted from the fields of statistics; computer science, and, most importantly, machine learning, databases, data visualization, and so on.This book takes you through an entire journey of statistics, from knowing very little to becoming comfortable in using various statistical methods for data science tasks. It starts off with simple statistics and then move on to statistical methods that are used in data science algorithms. The R programs for statistical computation are clearly explained along with logic. You will come across various mathematical concepts, such as variance, standard deviation, probability, matrix calculations, and more. You will learn only what is required to implement statistics in data science tasks such as data cleaning, mining, and analysis. You will learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks.By the end of the book, you will be comfortable with performing various statistical computations for data science programmatically.Style and approachStep by step comprehensive guide with real world examples
Tools to learn more effectively

Saving Books

Keyword Search

Annotating Text

Listen to it instead
Information
Table of contents
- Title Page
- Copyright
- Credits
- About the Author
- About the Reviewer
- www.PacktPub.com
- Customer Feedback
- Preface
- Transitioning from Data Developer to Data Scientist
- Declaring the Objectives
- A Developer's Approach to Data Cleaning
- Data Mining and the Database Developer
- Statistical Analysis for the Database Developer
- Database Progression to Database Regression
- Regularization for Database Improvement
- Database Development and Assessment
- Databases and Neural Networks
- Boosting your Database
- Database Classification using Support Vector Machines
- Database Structures and Machine Learning
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app
