
- 268 pages
- English
- PDF
- Available on iOS & Android
First Course In Module Theory, A
About this book
This book is an introduction to module theory for the reader who knows something about linear algebra and ring theory. Its main aim is the derivation of the structure theory of modules over Euclidean domains. This theory is applied to obtain the structure of abelian groups and the rational canonical and Jordan normal forms of matrices. The basic facts about rings and modules are given in full generality, so that some further topics can be discussed, including projective modules and the connection between modules and representations of groups.The book is intended to serve as supplementary reading for the third or fourth year undergraduate who is taking a course in module theory. The further topics point the way to some projects that might be attempted in conjunction with a taught course.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Contents
- Introduction
- Chapter 1 Rings and Ideals
- Chapter 2 Euclidean Domains
- Chapter 3 Modules and Submodules
- Chapter 4 Homomorphisms
- Chapter 5 Free Modules
- Chapter 6 Quotient Modules and Cyclic Modules
- Chapter 7 Direct Sums of Modules
- Chapter 8 Torsion and the Primary Decomposition
- Chapter 9 Presentations
- Chapter 10 Diagonalizing and Inverting Matrices
- Chapter 11 Fitting Ideals
- Chapter 12 The Decomposition of Modules
- Chapter 13 Normal Forms for Matrices
- Chapter 14 Projective Modules
- Hints and Solutions for the Exercises
- Bibliography
- Index