
- 324 pages
- English
- PDF
- Available on iOS & Android
Six Lectures On Dynamical Systems
About this book
This volume consists of six articles covering different facets of the mathematical theory of dynamical systems. The topics range from topological foundations through invariant manifolds, decoupling, perturbations and computations to control theory. All contributions are based on a sound mathematical analysis. Some of them provide detailed proofs while others are of a survey character. In any case, emphasis is put on motivation and guiding ideas. Many examples are included.The papers of this volume grew out of a tutorial workshop for graduate students in mathematics held at the University of Augsburg. Each of the contributions is self-contained and provides an in-depth insight into some topic of current interest in the mathematical theory of dynamical systems. The text is suitable for courses and seminars on a graduate student level.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Contents
- Preface
- Dynamical Systems: The Topological Foundations
- Integral Manifolds for Carathéodory Type Differential Equations in Banach Spaces
- CONTROL THEORY AND DYNAMICAL SYSTEMS
- SHADOWING IN DISCRETE DYNAMICAL SYSTEMS
- PERTURBATION OF INVARIANT MANIFOLDS OF ORDINARY DIFFERENTIAL EQUATIONS1
- THE REDUCTION OF DISCRETE DYNAMICAL AND SEMIDYNAMICAL SYSTEMS IN METRIC SPACES