
- 280 pages
- English
- PDF
- Available on iOS & Android
Riemannian Geometry In An Orthogonal Frame
About this book
Foreword by S S Chern
In 1926-27, Cartan gave a series of lectures in which he introduced exterior forms at the very beginning and used extensively orthogonal frames throughout to investigate the geometry of Riemannian manifolds. In this course he solved a series of problems in Euclidean and non-Euclidean spaces, as well as a series of variational problems on geodesics. In 1960, Sergei P Finikov translated from French into Russian his notes of these Cartan's lectures and published them as a book entitled Riemannian Geometry in an Orthogonal Frame. This book has many innovations, such as the notion of intrinsic normal differentiation and the Gaussian torsion of a submanifold in a Euclidean multidimensional space or in a space of constant curvature, an affine connection defined in a normal fiber bundle of a submanifold, etc. It has now been translated into English by Vladislav V Goldberg, currently Distinguished Professor of Mathematics at the New Jersey Institute of Technology, USA, who also edited the Russian edition.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Contents
- Foreword
- Translator's Introduction
- Preface to the Russian Edition
- PRELIMINARIES
- A. GEOMETRY OF EUCLIDEAN SPACE
- B. THE THEORY OF RIEMANNIAN MANIFOLDS
- C. CURVATURE AND TORSION OF A MANIFOLD
- D. THE THEORY OF GEODESIC LINES
- E. EMBEDDED MANIFOLDS
- Subject Index