
- 524 pages
- English
- PDF
- Available on iOS & Android
Recent Progress In Conformal Geometry
About this book
This book presents a new front of research in conformal geometry, on sign-changing Yamabe-type problems and contact form geometry in particular. New ground is broken with the establishment of a Morse lemma at infinity for sign-changing Yamabe-type problems. This family of problems, thought to be out of reach a few years ago, becomes a family of problems which can be studied: the book lays the foundation for a program of research in this direction.In contact form geometry, a cousin of symplectic geometry, the authors prove a fundamental result of compactness in a variational problem on Legrendrian curves, which allows one to define a homology associated to a contact structure and a vector field of its kernel on a three-dimensional manifold. The homology is invariant under deformation of the contact form, and can be read on a sub-Morse complex of the Morse complex of the variational problem built with the periodic orbits of the Reeb vector-field. This book introduces, therefore, a practical tool in the field, and this homology becomes computable.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Contents
- Preface A. Bahri and Y. Xu
- 1. Sign-Changing Yamabe-Type Problems
- Bibliography
- 2. Contact Form Geometry
- Bibliography