Lectures on Real Analysis
About this book
The theory of the Lebesgue integral is a main pillar in the foundation of modern analysis and its applications, including probability theory. This volume shows how and why the Lebesgue integral is such a universal and powerful concept.
The lines of development of the theory are made clear by the order in which the main theorems are presented. Frequent references to earlier theorems made in the proofs emphasize the interdependence of the theorems and help to show how the various definitions and theorems fit together. Counterexamples are included to show why a hypothesis in a theorem cannot be dropped.
The book is based upon a course on real analysis which the author has taught. It is particularly suitable for a one-year course at the graduate level. Precise statements and complete proofs are given for every theorem, with no obscurity left. For this reason the book is also suitable for self-study.
Request Inspection Copy
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Contents
- Preface
- List of Notations
- Chapter 1 Measure Spaces
- Chapter 2 The Lebesgue Integral
- Chapter 3 Differentiation and Integration
- Chapter 4 The Classical Banach Spaces
- Chapter 5 Extension of Additive Set Functions to Measures
- Chapter 6 Measure and Integration on the Euclidean Space
- Chapter 7 Hausdorff Measures on the Euclidean Space
- Bibliography
- Index
