
- 492 pages
- English
- PDF
- Available on iOS & Android
An Introduction to the Theory of Probability
About this book
The Theory of Probability is a major tool that can be used to explain and understand the various phenomena in different natural, physical and social sciences. This book provides a systematic exposition of the theory in a setting which contains a balanced mixture of the classical approach and the modern day axiomatic approach. After reviewing the basis of the theory, the book considers univariate distributions, bivariate normal distribution, multinomial distribution, convergence of random variables and elements of stochastic process. Difficult ideas have been explained lucidly and augmented with explanatory notes, examples and exercises. The basic requirement for reading the book is the knowledge of mathematics at graduate level.
This book tries to explain the difficult ideas in axiomatic approach to the theory in a clear and comprehensive manner. It addresses several unusual distributions including the power series distribution. Readers will find many worked-out examples and exercises with hints, which will make the book easily readable and engaging.
The author is a former professor of the Indian Statistical Institute, India.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Contents
- Preface
- Glossary of Some Frequently Used Symbols and Abbreviations
- 1: Preliminaries
- 2: The Classical Approach
- 3: Axiomatic Approach
- 4: Random Variables and Probability Distributions
- 5: Expectation of a Discrete Random Variable
- 6: Some Properties of a Probability Distribution on R
- 7: Generating Functions
- 8: Some Discrete Distributions on R
- 9: Some Continuous Distributions on R
- 10: Probability Distribution on R
- 11: Probability Distributions of Functions of Random Variables
- 12: Convergence of a Sequence of Random Variables
- 13: Elements of Stochastic Process
- Appendix
- Bibliography
- Subject Index
- Statistical Tables