
Matrix Calculus and Kronecker Product
A Practical Approach to Linear and Multilinear Algebra
- 324 pages
- English
- PDF
- Available on iOS & Android
Matrix Calculus and Kronecker Product
A Practical Approach to Linear and Multilinear Algebra
About this book
This book provides a self-contained and accessible introduction to linear and multilinear algebra. Besides the standard techniques for linear and multilinear algebra many advanced topics are included. Emphasis is placed on the Kronecker product and tensor product. The Kronecker product has widespread applications in signal processing, discrete wavelets, statistical physics, computer graphics, fractals, quantum mechanics and quantum computing. All these fields are covered in detail. A key feature of the book is the many detailed worked-out examples. Computer algebra applications are also given. Each chapter includes useful exercises. The book is well suited for pure and applied mathematicians as well as theoretical physicists and engineers.
New topics added to the second edition are: braid-like relations, Clebsch–Gordan expansion, nearest Kronecker product, Clifford and Pauli group, universal enveloping algebra, computer algebra and Kronecker product.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Contents
- Preface
- Symbol Index
- 1. Matrix Calculus
- 2. Kronecker Product
- 3. Applications
- 4. Tensor Product
- 5. Computer Algebra Implementations
- Bibliography
- Index