Dynamical and Complex Systems
eBook - ePub

Dynamical and Complex Systems

  1. 228 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Dynamical and Complex Systems

About this book

-->

This book leads readers from a basic foundation to an advanced level understanding of dynamical and complex systems. It is the perfect text for graduate or PhD mathematical-science students looking for support in topics such as applied dynamical systems, Lotka–Volterra dynamical systems, applied dynamical systems theory, dynamical systems in cosmology, aperiodic order, and complex systems dynamics.

Dynamical and Complex Systems is the fifth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.

--> -->
Contents:

  • Chaos in Statistical Physics (Rainer Klages)
  • Aperiodic Order (Uwe Grimm)
  • Complex Systems Dynamics (Hannah M Fry)
  • Dynamical Systems in Cosmology (Christian G Böhmer and Nyein Chan)
  • Lotka–Volterra Dynamical Systems (Stephen Baigent)
  • Applied Dynamical Systems (David Arrowsmith)

--> -->
Readership: Researchers, graduate or PhD mathematical-science students who require a reference book that covers advanced techniques used in applied mathematics research.
-->

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Dynamical and Complex Systems by Shaun Bullett, Tom Fearn, Frank Smith in PDF and/or ePUB format, as well as other popular books in Mathematics & Applied Mathematics. We have over one million books available in our catalogue for you to explore.

Information

Chapter 1

Chaos in Statistical Physics

Rainer Klages
School of Mathematical Sciences Queen Mary University of London Mile End Road, London E1 4NS, UK
Max Planck Institute for the Physics of Complex Systems Nöthnitzer Str. 38, D-01187 Dresden, Germany [email protected]
This chapter introduces to chaos in dynamical systems and how this theory can be applied to derive fundamental laws of statistical physics from first principles. We first elaborate on the concept of deterministic chaos by defining and calculating Lyapunov exponents and dynamical entropies as fundamental quantities characterising chaos. These quantities are shown to be related to each other by Pesin’s theorem. Considering open systems where particles can escape from a set asks for a generalisation of this theorem which involves fractals, whose properties we briefly describe. We then cross-link this theory to statistical physics by discussing simple random walks on the line, their characterisation in terms of diffusion, and the relation to elementary concepts of Brownian motion. This sets the scene for considering the problem of chaotic diffusion. Here we derive a formula exactly expressing diffusion in terms of the chaos quantities mentioned above.

1. Introduction

A dynamical system is a system, represented by points in abstract space, that evolves in time. Very intuitively, one may say that the path of a point particle generated by a dynamical system looks “chaotic” if it displays “random-looking” evolution in time and space. The simplest dynamical systems that can exhibit chaotic dynamics are one-dimensional maps, as we will discuss below. Further details of such dynamics, including a mathematically rigorous definition of chaos, are given in Chapter 6.a Surprisingly, abstract low-dimensional chaotic dynamics bears similarities to the dynamics of interacting physical many-particle systems. This is the key point that we explore in this chapter.
Over the past few decades it was found that famous statistical physical laws like Ohm’s law for electric conduction, Fourier’s law for heat conduction, and Fick’s law for the diffusive spreading of particles, which a long time ago were formulated phenomenologically, can be derived from first principles in chaotic dynamical systems. This sheds new light on the rigorous mathematical foundations of Nonequilibrium Statistical Physics, which is the theory of the dynamics of many-particle systems under external gradients or fields. The external forces induce transport of physical quantities like charge, energy, or matter. The goal of non-equilibrium statistical physics is to derive macroscopic statistical laws describing such transport starting from the microscopic dynamics for the single parts of many-particle systems. While the conventional theory puts in randomness “by hand” by using probabilistic, or stochastic, equations of motion like random walks or stochastic differential equations, recent developments in the theory of dynamical systems enable to do such derivations starting from deterministic equations of motion. Determinism means that no random variables are involved, rather, randomness is generated by chaos in the underlying dynamics. This is the field of research that will be introduced by this chapter.
This theory also illustrates the emergence of complexity in systems under non-equilibrium conditions: Due to the microscopic nonlinear interaction of the single parts in a complex many-particle system novel, non-trivial dynamics, in this case exemplified by universal transport laws, may emerge on macroscopic scales. The dynamics of a complex system, as a whole, is thus different from the sum of its single parts. In the very simplest case, this idea is illustrated by the interaction of a point particle with a scatterer, where the latter is modelled by a one-dimensional map. This is our vehicle of demonstration in the following, because this simple model can be solved rigorously analytically.
Our chapter consists of two sections: In Section 2 we introduce to two important quantities...

Table of contents

  1. Cover Page
  2. Title
  3. Copyright
  4. Preface
  5. Contents
  6. Chapter 1. Chaos in Statistical Physics
  7. Chapter 2. Aperiodic Order
  8. Chapter 3. Complex Systems Dynamics
  9. Chapter 4. Dynamical Systems in Cosmology
  10. Chapter 5. Lotka–Volterra Dynamical Systems
  11. Chapter 6. Applied Dynamical Systems