Differential Geometry of Curves and Surfaces
eBook - ePub

Differential Geometry of Curves and Surfaces

0

  1. 328 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Differential Geometry of Curves and Surfaces

0

About this book

This engrossing volume on curve and surface theories is the result of many years of experience the authors have had with teaching the most essential aspects of this subject. The first half of the text is suitable for a university-level course, without the need for referencing other texts, as it is completely self-contained. More advanced material in the second half of the book, including appendices, also serves more experienced students well. Furthermore, this text is also suitable for a seminar for graduate students, and for self-study. It is written in a robust style that gives the student the opportunity to continue his study at a higher level beyond what a course would usually offer. Further material is included, for example, closed curves, enveloping curves, curves of constant width, the fundamental theorem of surface theory, constant mean curvature surfaces, and existence of curvature line coordinates. Surface theory from the viewpoint of manifolds theory is explained, and encompasses higher level material that is useful for the more advanced student. This includes, but is not limited to, indices of umbilics, properties of cycloids, existence of conformal coordinates, and characterizing conditions for singularities. In summary, this textbook succeeds in elucidating detailed explanations of fundamental material, where the most essential basic notions stand out clearly, but does not shy away from the more advanced topics needed for research in this field. It provides a large collection of mathematically rich supporting topics. Thus, it is an ideal first textbook in this field.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Differential Geometry of Curves and Surfaces by Masaaki Umehara, Kotaro Yamada in PDF and/or ePUB format, as well as other popular books in Mathematics & Differential Geometry. We have over one million books available in our catalogue for you to explore.

Information

Chapter III

Surfaces from the Viewpoint of Manifolds*

In the previous chapters, we studied curves and surfaces, but looking at surfaces from the viewpoint of manifolds allows us to obtain a broader perspective. In this chapter, for those readers that are familiar with manifolds, we aim at the Hopf theorem (Theorem 17.4) for constant mean curvature surfaces, and continue with further study of surfaces. We start in Section 12 with a review of differential forms, and use them in Sections 13 and 14 to prove the Gauss-Bonnet theorem on 2-dimensional Riemannian manifolds. As an application of that, in Section 15 we prove the index formula for vector fields on compact oriented 2-manifolds and study the index of umbilics on a surface. In Section 16, we show existence of conformal coordinates for surfaces. Then in Section 17, we introduce the Gauss and Codazzi equations, and the fundamental theorem of surface theory, which will be proven in Appendix B.10, and prove the Hopf theorem. In Section 18, we explain the maximal speed descent property (the property of brachistocrones) for cycloids from the viewpoint of Riemannian geometry. Finally in Section 19, we give a proof of existence of geodesic triangulations on surfaces. In this chapter, we assume that the reader is familiar with vector fields on manifolds, differential forms, wedge products and exterior derivatives. (See the references suggested in the text within this chapter.)

12.Differential forms

We now assume the reader is familiar with manifolds, for example, the knowledge in Chapter 5 of Singer-Thorpe [35].
We will refer to the sets of real-valued differential 0-forms, 1-forms, 2-forms on a 2-manifold (i.e. 2-dimensional differentiable manifold) S as
figure
0(S),
figure
1(S),
figure
2(S), respectively. In fact,
figure
0(S) is the same as the set C(S) of smooth functions on S. The exterior derivative operators are linear maps between these sets as follows:
figure
In particular, d0 is the same as the exterior derivative d defined in Section 7.
Let
figure
(S) denote the set of all smooth vector fields on a manifold S. Then a differential 1-form is a linear map α:
figure
(S) → C(S) that satisfies
figure
A differential 2-form β, or 2-form β for short, satisfies
figure
and so is a bilinear map β:
figure
(S) ×
figure
(S) → C(S). Furthermore, when α and β are 1-forms, we can define their wedge product, or exterior product, “αβ” as
figure
(In some textbooks, the wedge produ...

Table of contents

  1. Cover Page
  2. Title
  3. Copyright
  4. Contents
  5. Preface
  6. I. Curves
  7. II. Surfaces
  8. III. Surfaces from the Viewpoint of Manifolds*
  9. Appendix A Supplements
  10. Appendix B Advanced Topics on Curves and Surfaces
  11. Answers to Exercises
  12. Bibliography
  13. List of Symbols
  14. Index