This book is the solution manual to the textbook "A Modern Course in University Physics". It contains solutions to all the problems in the aforementioned textbook. This solution manual is a good companion to the textbook. In this solution manual, we work out every problem carefully and in detail. With this solution manual used in conjunction with the textbook, the reader can understand and grasp the physics ideas more quickly and deeply. Some of the problems are not purely exercises; they contain extension of the materials covered in the textbook. Some of the problems contain problem-solving techniques that are not covered in the textbook.
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go. Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Problems and Solutions in University Physics by Fuxiang Han in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Optics & Light. We have over one million books available in our catalogue for you to explore.
1.1 Number of wavelengths between two points. A light wave of vacuum wavelength 500 nm travels from point A to point B that is a distance of 0.01 m away.
(1) If the space containing points A and B is vacuum, how many wavelengths span the space from A to B?
(2) If the region between points A and B is completely filled with glass of refractive index n = 1.5, how many wavelengths span the space from A to B?
Let DAB be the distance between points A and B, λ the vacuum wavelength, and λ′ the wavelength in glass.
(1) In vacuum, the number of wavelengths that span the space from A to B is
(2) Note that the frequency of a light beam remains unchanged no matter in which medium it travels. The wavelength of light in glass is given by
where v is the speed of light in glass and f and f′ are respectively the frequencies of light in vacuum and in glass with f′ = f. If the region between points A and B is completely filled with glass, the number of wavelengths that span the space from A to B is given by
1.2 Dispersion of fused silica. The wavelength-dependence of the refractive index of fused silica is given by
(1) At what wavelengths, does n diverge? If n is infinite for light of a particular wavelength, can the light of this wavelength propagate in fused silica?
(2) At what wavelengths, is n equal to unity?
(3) What is the value of n as λ → ∞?
(4) Plot n as a function of λ in the visible region for λ from 400 nm to 700 nm.
(1) From the given expression of n in terms of λ, we see that n diverges at λ ≈ 6.840 × 101, 1.162 × 102, and 9.896 × 103 nm. If n = ∞ for light of a particular wavelength, then v = c/n = 0, which implies that the light of this wavelength can not propagate in fused silica and will be absorbed.
(2) To find the wavelengths at which n = 1, we set the given expression for n2 to unity and obtain
From the above equation, we see that n = 1 at λ1 = 0. The other wavelengths at which n = 1 are to be solved from
The above equation is actually a quadratic algebraic equation in λ2. Simplifying the above equation, we have
where
α = B1 + B2 + B3,
β = − [B1(C2 +C3)+B2(C3+C1)+B3(C1+C2)],
γ = B1C2C3 + B2C3C1 + B3C1C2.
Solving for λ2 from Eq. (1.1), we obtain
Evaluating the above expression using the given values of constants, we obtain the following two positive solutions for λ