
Generative Adversarial Networks Projects
Build next-generation generative models using TensorFlow and Keras
- 316 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
Generative Adversarial Networks Projects
Build next-generation generative models using TensorFlow and Keras
About this book
Explore various Generative Adversarial Network architectures using the Python ecosystem
Key Features
- Use different datasets to build advanced projects in the Generative Adversarial Network domain
- Implement projects ranging from generating 3D shapes to a face aging application
- Explore the power of GANs to contribute in open source research and projects
Book Description
Generative Adversarial Networks (GANs) have the potential to build next-generation models, as they can mimic any distribution of data. Major research and development work is being undertaken in this field since it is one of the rapidly growing areas of machine learning. This book will test unsupervised techniques for training neural networks as you build seven end-to-end projects in the GAN domain.
Generative Adversarial Network Projects begins by covering the concepts, tools, and libraries that you will use to build efficient projects. You will also use a variety of datasets for the different projects covered in the book. The level of complexity of the operations required increases with every chapter, helping you get to grips with using GANs. You will cover popular approaches such as 3D-GAN, DCGAN, StackGAN, and CycleGAN, and you'll gain an understanding of the architecture and functioning of generative models through their practical implementation.
By the end of this book, you will be ready to build, train, and optimize your own end-to-end GAN models at work or in your own projects.
What you will learn
- Train a network on the 3D ShapeNet dataset to generate realistic shapes
- Generate anime characters using the Keras implementation of DCGAN
- Implement an SRGAN network to generate high-resolution images
- Train Age-cGAN on Wiki-Cropped images to improve face verification
- Use Conditional GANs for image-to-image translation
- Understand the generator and discriminator implementations of StackGAN in Keras
Who this book is for
If you're a data scientist, machine learning developer, deep learning practitioner, or AI enthusiast looking for a project guide to test your knowledge and expertise in building real-world GANs models, this book is for you.
Tools to learn more effectively

Saving Books

Keyword Search

Annotating Text

Listen to it instead
Information
StackGAN - Text to Photo-Realistic Image Synthesis
- Introduction to StackGAN
- The architecture of StackGAN
- Data gathering and preparation
- A Keras implementation of StackGAN
- Training a StackGAN
- Evaluating the model
- Practical applications of a pix2pix network
Introduction to StackGAN
Architecture of StackGAN
- Stack-I GAN: text encoder, Conditioning Augmentation network, generator network, discriminator network, embedding compressor network
- Stack-II GAN: text encoder, Conditioning Augmentation network, generator network, discriminator network, embedding compressor network

| Notation | Description |
| t | This is a text description of the true data distribution. |
| z | This is a randomly sampled nois... |
Table of contents
- Title Page
- Copyright and Credits
- About Packt
- Contributors
- Preface
- Introduction to Generative Adversarial Networks
- 3D-GAN - Generating Shapes Using GANs
- Face Aging Using Conditional GAN
- Generating Anime Characters Using DCGANs
- Using SRGANs to Generate Photo-Realistic Images
- StackGAN - Text to Photo-Realistic Image Synthesis
- CycleGAN - Turn Paintings into Photos
- Conditional GAN - Image-to-Image Translation Using Conditional Adversarial Networks
- Predicting the Future of GANs
- Other Books You May Enjoy
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app