Periodic Differential Equations in the Plane
eBook - ePub

Periodic Differential Equations in the Plane

A Topological Perspective

  1. 195 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Periodic Differential Equations in the Plane

A Topological Perspective

About this book

Periodic differential equations appear in many contexts such as in the theory of nonlinear oscillators, in celestial mechanics, or in population dynamics with seasonal effects. The most traditional approach to study these equations is based on the introduction of small parameters, but the search of nonlocal results leads to the application of several topological tools. Examples are fixed point theorems, degree theory, or bifurcation theory. These well-known methods are valid for equations of arbitrary dimension and they are mainly employed to prove the existence of periodic solutions.

Following the approach initiated by Massera, this book presents some more delicate techniques whose validity is restricted to two dimensions. These typically produce additional dynamical information such as the instability of periodic solutions, the convergence of all solutions to periodic solutions, or connections between the number of harmonic and subharmonic solutions.

The qualitative study of periodic planar equations leads naturally to a class of discrete dynamical systems generated by homeomorphisms or embeddings of the plane. To study these maps, Brouwer introduced the notion of a translation arc, somehow mimicking the notion of an orbit in continuous dynamical systems. The study of the properties of these translation arcs is full of intuition and often leads to "non-rigorous proofs". In the book, complete proofs following ideas developed by Brown are presented and the final conclusion is the Arc Translation Lemma, a counterpart of the Poincaré–Bendixson theorem for discrete dynamical systems.

Applications to differential equations and discussions on the topology of the plane are the two themes that alternate throughout the five chapters of the book.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Periodic Differential Equations in the Plane by Rafael Ortega in PDF and/or ePUB format, as well as other popular books in Mathematics & Differential Equations. We have over one million books available in our catalogue for you to explore.

Information

Publisher
De Gruyter
Year
2019
Print ISBN
9783110550405
eBook ISBN
9783110550429

Table of contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Contents
  5. Preface
  6. 1 Periodic differential equations and isotopies
  7. 2 Massera’s theorems
  8. 3 Free embeddings of the plane
  9. 4 Index of stable fixed points and periodic solutions
  10. 5 Proof of the arc translation lemma
  11. 6 Appendix on degree theory
  12. 7 Solutions to the exercises
  13. Bibliography
  14. Index