An Introduction to LTE
eBook - ePub

An Introduction to LTE

LTE, LTE-Advanced, SAE, VoLTE and 4G Mobile Communications

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

An Introduction to LTE

LTE, LTE-Advanced, SAE, VoLTE and 4G Mobile Communications

About this book

Following on from the successful first edition (March 2012), this book gives a clear explanation of what LTE does and how it works. The content is expressed at a systems level, offering readers the opportunity to grasp the key factors that make LTE the hot topic amongst vendors and operators across the globe. The book assumes no more than a basic knowledge of mobile telecommunication systems, and the reader is not expected to have any previous knowledge of the complex mathematical operations that underpin LTE.

This second edition introduces new material for the current state of the industry, such as the new features of LTE in Releases 11 and 12, notably coordinated multipoint transmission and proximity services; the main short- and long-term solutions for LTE voice calls, namely circuit switched fallback and the IP multimedia subsystem; and the evolution and current state of the LTE market. It also extends some of the material from the first edition, such as inter-operation with other technologies such as GSM, UMTS, wireless local area networks and cdma2000; additional features of LTE Advanced, notably heterogeneous networks and traffic offloading; data transport in the evolved packet core; coverage and capacity estimation for LTE; and a more rigorous treatment of modulation, demodulation and OFDMA. The author breaks down the system into logical blocks, by initially introducing the architecture of LTE, explaining the
techniques used for radio transmission and reception and the overall operation of the system, and concluding with more specialized topics such as LTE voice calls and the later releases of the specifications. This methodical approach enables readers to move on to tackle the specifications and the more advanced texts with confidence.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access An Introduction to LTE by Christopher Cox in PDF and/or ePUB format, as well as other popular books in Tecnologia e ingegneria & Comunicazioni mobili e wireless. We have over one million books available in our catalogue for you to explore.

Information

Chapter 1
Introduction

Our first chapter puts LTE into its historical context, and lays out its requirements and key technical features. We begin by reviewing the architectures of UMTS and GSM, and by introducing some of the terminology that the two systems use. We then summarize the history of mobile telecommunication systems, discuss the issues that have driven the development of LTE and show how UMTS has evolved first into LTE and then into an enhanced version known as LTE-Advanced. The chapter closes by reviewing the standardization process for LTE.

1.1 Architectural Review of UMTS and GSM

1.1.1 High-Level Architecture

LTE was designed by a collaboration of national and regional telecommunications standards bodies known as the Third Generation Partnership Project (3GPP) [1] and is known in full as 3GPP Long-Term Evolution. LTE evolved from an earlier 3GPP system known as the Universal Mobile Telecommunication System (UMTS), which in turn evolved from the Global System for Mobile Communications (GSM). To put LTE into context, we will begin by reviewing the architectures of UMTS and GSM, and by introducing some of the important terminology.
A mobile phone network is officially known as a public land mobile network (PLMN), and is run by a network operator such as Vodafone or Verizon. UMTS and GSM share a common network architecture, which is shown in Figure 1.1. There are three main components, namely the core network, the radio access network and the mobile phone.
c01f001
Figure 1.1 High-level architecture of UMTS and GSM
The core network contains two domains. The circuit switched (CS) domain transports phone calls across the geographical region that the network operator is covering, in the same way as a traditional fixed-line telecommunication system. It communicates with the public switched telephone network (PSTN) so that users can make calls to land lines and with the circuit switched domains of other network operators. The packet switched (PS) domain transports data streams, such as web pages and emails, between the user and external packet data networks (PDNs) such as the internet.
The two domains transport their information in very different ways. The CS domain uses a technique known as circuit switching, in which it sets aside a dedicated two-way connection for each individual phone call so that it can transport the information with a constant data rate and minimal delay. This technique is effective, but is rather inefficient: the connection has enough capacity to handle the worst-case scenario in which both users are speaking at the same time, but is usually over-dimensioned. Furthermore, it is inappropriate for data transfers, in which the data rate can vary widely.
To deal with the problem, the PS domain uses a different technique, known as packet switching. In this technique, a data stream is divided into packets, each of which is labelled with the address of the required destination device. Within the network, routers read the address labels of the incoming data packets and forward them towards the corresponding destinations. The network's resources are shared amongst all the users, so the technique is more efficient than circuit switching. However, delays can result if too many devices try to transmit at the same time, a situation that is familiar from the operation of the internet.
The radio access network handles the core network's radio communications with the user. In Figure 1.1, there are actually two separate radio access networks, namely the GSM EDGE radio access network (GERAN) and the UMTS terrestrial radio access network (UTRAN). These use the different radio communication techniques of GSM and UMTS, but share a common core network between them.
The user's device is known officially as the user equipment (UE) and colloquially as the mobile. It communicates with the radio access network over the air interface, also known as the radio interface. The direction from network to mobile is known as the downlink (DL) or forward link and the direction from mobile to network is known as the uplink (UL) or reverse link.
A mobile can work outside the coverage area of its network operator by using the resources from two public land mobile networks: the visited network, where the mobile is located and the operator's home network. This situation is known as roaming.

1.1.2 Architecture of the Radio Access Network

Figure 1.2 shows the radio access network of UMTS. The most important component is the base station, which in UMTS is officially known as the Node B. Each base station has one or more sets of antennas, through which it communicates with the mobiles in one or more sectors. As shown in the diagram, a typical base station uses three sets of antennas to control three sectors, each of which spans an a...

Table of contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Dedication
  5. Preface
  6. Acknowledgements
  7. List of Abbreviations
  8. Chapter 1: Introduction
  9. Chapter 2: System Architecture Evolution
  10. Chapter 3: Digital Wireless Communications
  11. Chapter 4: Orthogonal Frequency Division Multiple Access
  12. Chapter 5: Multiple Antenna Techniques
  13. Chapter 6: Architecture of the LTE Air Interface
  14. Chapter 7: Cell Acquisition
  15. Chapter 8: Data Transmission and Reception
  16. Chapter 9: Random Access
  17. Chapter 10: Air Interface Layer 2
  18. Chapter 11: Power-On and Power-Off Procedures
  19. Chapter 12: Security Procedures
  20. Chapter 13: Quality of Service, Policy and Charging
  21. Chapter 14: Mobility Management
  22. Chapter 15: Inter-operation with UMTS and GSM
  23. Chapter 16: Inter-operation with Non-3GPP Technologies
  24. Chapter 17: Self-Optimizing Networks
  25. Chapter 18: Enhancements in Release 9
  26. Chapter 19: LTE-Advanced and Release 10
  27. Chapter 20: Releases 11 and 12
  28. Chapter 21: Circuit Switched Fallback
  29. Chapter 22: VoLTE and the IP Multimedia Subsystem
  30. Chapter 23: Performance of LTE and LTE-Advanced
  31. Bibliography
  32. Index
  33. End User License Agreement