An Introduction to Categorical Data Analysis
eBook - ePub

An Introduction to Categorical Data Analysis

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

An Introduction to Categorical Data Analysis

About this book

A valuable new edition of a standard reference

The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data.

Adding to the value in the new edition is:

• Illustrations of the use of R software to perform all the analyses in the book

• A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis

• New sections in many chapters introducing the Bayesian approach for the methods of that chapter

• More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets

• An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises

Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more.

An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access An Introduction to Categorical Data Analysis by Alan Agresti in PDF and/or ePUB format, as well as other popular books in Mathematics & Probability & Statistics. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Wiley
Year
2018
Print ISBN
9781119405269
eBook ISBN
9781119405283

CHAPTER 1
INTRODUCTION

From helping to assess the value of new medical treatments to evaluating the factors that affect our opinions on controversial issues, scientists today are finding myriad uses for categorical data analyses. It is primarily for these scientists and their collaborating statisticians – as well as those training to perform these roles – that this book was written.
This first chapter reviews the most important probability distributions for categorical data: the binomial and multinomial distributions. It also introduces maximum likelihood, the most popular method for using data to estimate parameters. We use this type of estimate and a related likelihood function to conduct statistical inference. We also introduce the Bayesian approach to statistical inference, which utilizes probability distributions for the parameters as well as for the data. We begin by describing the major types of categorical data.

1.1 CATEGORICAL RESPONSE DATA

A categorical variable has a measurement scale consisting of a set of categories. For example, political ideology might be measured as liberal, moderate, or conservative; choice of accommodation might use categories house, condominium, and apartment; a diagnostic test to detect e-mail spam might classify an incoming e-mail message as spam or legitimate. Categorical variables are often referred to as qualitative, to distinguish them from quantitative variables, which take numerical values, such as age, income, and number of children in a family.
Categorical variables are pervasive in the social sciences for measuring attitudes and opinions, with categories such as (agree, disagree), (yes, no), and (favor, oppose, undecided). They also occur frequently in the health sciences, for measuring responses such as whether a medical treatment is successful (yes, no), mammogram-based breast diagnosis (normal, benign, probably benign, suspicious, malignant with cancer), and stage of a disease (initial, intermediate, advanced). Categorical variables are common for service-quality ratings of any company or organization that has customers (e.g., with categories excellent, good, fair, poor). In fact, categorical variables occur frequently in most disciplines. Other examples include the behavioral sciences (e.g., diagnosis of type of mental illness, with categories schizophrenia, depression, neurosis), ecology (e.g., primary land use in satellite image, with categories woodland, swamp, grassland, agriculture, urban), education (e.g., student responses to an exam question, with categories correct, incorrect), and marketing (e.g., consumer cell-phone preference, with categories Samsung, Apple, Nokia, LG, Other). They even occur in highly quantitative fields such as the engineering sciences and industrial quality control, when items are classified according to whether or not they conform to certain standards.

1.1.1 Response Variable and Explanatory Variables

Most statistical analyses distinguish between a response variable and explanatory variables. For instance, ordinary regression models describe how the mean of a quantitative response variable, such as annual income, changes according to levels of explanatory variables, such as number of years of education and numb...

Table of contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Preface
  5. About the Companion Website
  6. Chapter 1 Introduction
  7. Chapter 2 Analyzing Contingency Tables
  8. Chapter 3 Generalized Linear Models
  9. Chapter 4 Logistic Regression
  10. Chapter 5 Building and Applying Logistic Regression Models
  11. Chapter 6 Multicategory Logit Models
  12. Chapter 7 Loglinear Models for Contingency Tables and Counts
  13. Chapter 8 Models for Matched Pairs
  14. Chapter 9 Marginal Modeling of Correlated, Clustered Responses
  15. Chapter 10 Random Effects: Generalized Linear Mixed Models
  16. Chapter 11 Classification and Smoothing *
  17. Chapter 12 A Historical Tour of Categorical Data Analysis *
  18. Appendix: Software for Categorical Data Analysis
  19. Brief Solutions to Odd-Numbered Exercises
  20. Bibliography
  21. Examples Index
  22. Subject Index
  23. End User License Agreement