Innovation in Wind Turbine Design
eBook - ePub

Innovation in Wind Turbine Design

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Innovation in Wind Turbine Design

About this book

An updated and expanded new edition of this comprehensive guide to innovation in wind turbine design

Innovation in Wind Turbine Design, Second Edition comprehensively covers the fundamentals of design, explains the reasons behind design choices, and describes the methodology for evaluating innovative systems and components.

This second edition has been substantially expanded and generally updated.  New content includes elementary actuator disc theory of the low induction rotor concept, much expanded discussion of offshore issues and of airborne wind energy systems, updated drive train information with basic theory of the epicyclic gears and differential drives, a clarified presentation of the basic theory of energy in the wind and fallacies about ducted rotor design related to theory, lab testing and field testing of the Katru and Wind Lens ducted rotor systems, a short review of LiDAR, latest developments of the multi-rotor concept including the Vestas 4 rotor system and a new chapter on the innovative DeepWind VAWT.

The bookis divided into four main sections covering design background, technology evaluation, design themes and innovative technology examples.

Key features:

  • Expanded substantially with new content.
  • Comprehensively covers the fundamentals of design, explains the reasons behind design choices, and describes the methodology for evaluating innovative systems and components.
  • Includes innovative examples from working experiences for commercial clients.
  • Updated to cover recent developments in the field. 

The book is a must-have reference for professional wind engineers, power engineers and turbine designers, as well as consultants, researchers and graduate students.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Innovation in Wind Turbine Design by Peter Jamieson in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Mechanical Engineering. We have over one million books available in our catalogue for you to explore.

Part I
Design Background

Chapter 1
Rotor Aerodynamic Theory

1.1 Introduction

Theoretical background in energy extraction generalities and, more specifically, rotor aerodynamics of horizontal axis wind turbines (HAWTs) is developed in this chapter. Some prior knowledge of fluid dynamics in general and as applied to the analysis of wind turbine systems is assumed, in particular basic expressions for energy in a fluid flow, Bernoulli's equation, definitions of lift and drag, some appreciation of stall as an aerodynamic phenomenon and blade element momentum (BEM) theory in its conventional form as applied to HAWTs. Nevertheless, some of this basic knowledge is also reviewed, more or less from first principles. The aim is to express particular insights that will assist the further discussion of issues in optimisation of rotor design and also aid evaluation of various types of innovative systems, for example, those that exploit flow concentration.
Why focus much at all on theory in a book about innovative technology? Theory is often buried in more or less opaque computer code, which may generate loads of information that engineers can use in design. However, as is amplified in the following chapters, theory is in itself:
  • Food for innovation and suggestive of methods of performance enhancement or alternative concepts;
  • A basis for understanding what is possible and providing an overview appraisal of innovative concepts;
  • A source of analytic relationships that can guide early design at a stage where many key parameters remain to be determined and there are too many options to subject each to detailed evaluation.
Prior to discussions of actuator disc theory and the BEM theory that has underpinned most practical engineering calculations for rotor aerodynamic design and determination of wind turbine loads, some discussion of aerodynamic lift is presented. This is intended particularly to highlight a few specific insights which can guide design and evaluation of wind energy systems. In general, a much more detailed understanding of basic aerodynamics is required in wind turbine design. This must cover a wide range of topics, 2D and 3D flow effects in relation to aerofoil performance, stall behaviour, aeroelastic behaviour, unsteady effects including stall hysteresis and induction lag, determination of suitable aerofoil data for wide ranges in angle of attack, and so on. References [1–10] are a sample from extensive published work covering some of these issues.

1.2 Aerodynamic Lift

The earliest wind turbines tended to use the more obvious drag forces [11] experienced by anyone exposed to wind on a windy day, and use of the potentially more powerful lift forces was almost accidental. Exploitation of the aerodynamic lift force is at the heart of efficient modern wind turbines, but surprisingly the explanation of lift has been quite contentious. Before entering that territory, consider first Bernoulli's equation which is derived in many standard sources on fluid mechanics. Ignoring gravitational, thermal and other energy sources and considering only pressure and kinetic energy, this equation becomes:
c01-math-001
, where p is static pressure in a fluid element moving with a velocity of magnitude U, ρ is fluid density and p0 is the total pressure which, in the absence of energy extraction, is constant along any streamline in the flow field.
Bernoulli's equation is essentially an energy equation expressed dimensionally in units of pressure and can be viewed as conservation of energy per unit volume of the fluid. In that connection, pressure can be regarded as the source potential energy (per unit volume) that drives fluid flow. This interpretation is discussed subsequently and is seen to be crucial to a clear understanding of how a wind turbine rotor works.
Returning to the issue of aerodynamic lift, one view of the explanation of the lift force has been that the fluid, should it have a longer path to traverse on one side of an aerofoil, will travel faster in order to meet the fluid flowing past the other side at the trailing edge of the aerofoil. With increase in velocity, the associated static pressure in that region will reduce in consequence of Bernoulli's equation. The pressure deficit on the side of the plate with the longer flow path is then considered the source of the lift force.
There are various problems with this as an explanation of the lift force. Firstly, a thin plate set at an angle in a uniform flow field will...

Table of contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Table of Contents
  5. Dedication
  6. Foreword
  7. Preface
  8. Acknowledgement
  9. Introduction
  10. Part I: Design Background
  11. Part II: Technology Evaluation
  12. Part III: Design Themes
  13. Part IV: Innovative Technology Examples
  14. Index
  15. End User License Agreement