Cyber-Vigilance and Digital Trust
eBook - ePub

Cyber-Vigilance and Digital Trust

Cyber Security in the Era of Cloud Computing and IoT

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Cyber-Vigilance and Digital Trust

Cyber Security in the Era of Cloud Computing and IoT

About this book

Cyber threats are ever increasing. Adversaries are getting more sophisticated and cyber criminals are infiltrating companies in a variety of sectors. In today's landscape, organizations need to acquire and develop effective security tools and mechanisms – not only to keep up with cyber criminals, but also to stay one step ahead.

Cyber-Vigilance and Digital Trust develops cyber security disciplines that serve this double objective, dealing with cyber security threats in a unique way. Specifically, the book reviews recent advances in cyber threat intelligence, trust management and risk analysis, and gives a formal and technical approach based on a data tainting mechanism to avoid data leakage in Android systems

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Cyber-Vigilance and Digital Trust by Wiem Tounsi in PDF and/or ePUB format, as well as other popular books in Computer Science & Cryptography. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Wiley-ISTE
Year
2019
Print ISBN
9781786304483
eBook ISBN
9781119618386

1
What is Cyber Threat Intelligence and How is it Evolving?

1.1. Introduction

Today’s cyberattacks have changed in form, function and sophistication during the last few years. These cyberattacks no longer originate from digital hacktivists or online thugs. Held by well-funded and well-organized threat actors, cyberattacks have transformed from hacking for kicks to advanced attacks for profit which may range from financial aims to political gains. In that aim, attacks designed for mischief have been replaced with dynamic, stealthy and persistent attacks, known as advanced malware and advanced persistent threats (APTs). The reason is due to the complexity of new technologies. As a system gets more complex, it gets less secure, making it easier for the attacker to find weaknesses in the system and harder for the defender to secure it (Schneier 2000). As a result, attackers have a first-mover advantage, by trying new attacks first, while defenders have the disadvantage of being in a constant position of responding, for example better anti-virus software to combat new malwares and better intrusion detection system to detect malicious activities. Despite spending over 20 billion dollars annually on traditional security defenses (Piper 2013), organizations find themselves faced with this new generation of cyberattacks, which easily bypass traditional defenses such as traditional and next-generation firewalls, intrusion prevention systems, anti-virus and security gateways. Those defenses rely heavily on static malware signatures or lists of pattern-matching technology, leaving them extremely vulnerable to ever-evolving threats that exploit unknown and zero-day vulnerabilities. This calls for a new category of threat prevention tools adapted to the complex nature of new generation threats and attacks. This leads to what is commonly named cyber threat intelligence (CTI). CTI or threat intelligence means evidence-based knowledge representing threats that can inform decisions. It is an actionable defense to reduce the gap between advanced attacks and means of the organization’s defenses. We focus specifically on technical threat intelligence (TTI), which is rapidly becoming an ever-higher business priority (Chismon and Ruks 2015), since it is immediately actionable and is easier to quantify than other TI sub-categories. TTI is also the most-shared intelligence, because of its easy standardization (Yamakawa 2014). With TTI, we can feed firewalls, gateways, security information and event management (SIEM) or other appliances of various types with indicators of compromise (IOC) (Verizon 2015), for example malicious payloads and IP addresses. We can also ingest IOC into a searchable index or just for visualization and dashboards.
Despite its prevalence, many problems exist with TTI. These are mainly related to the quality of IOC (i.e. IP address lifetime, malware signatures) and the massive repositories of threat data given by provider’s databases which overwhelms their consumers (e.g. threat analysts) with data that is not always useful, which should be essential for generating intelligence. In many cases, threat feeds can simply amount to faster signatures that still fail to reach the attackers. For example, specific malicious payloads, URLs and IP addresses are so ephemeral that they may only be used once in the case of a true targeted attack.
To date, few analyses have been made on different types of TI and specifically on TTI. Moreover, very little research surveys have been reported on how new techniques and trends try to overcome TTI problems. Most of the existing literature reveals technical reports exposing periodic statistics related to the use of threat intelligence (Ponemon 2015; Shackleford 2015; Shackleford 2016), and also interesting empirical investigations for specific threat analysis techniques (Ahrend et al. 2016; Sillaber et al. 2016).
In order to develop effective defense strategies, organizations can save time and bypass confusions if they start defining what threat intelligence actually is, and how to use it and mitigate its problems given its different sub-categories.
This chapter aims to give a clear idea about threat intelligence and how literature subdivides it given its multiple sources, the gathering methods, the information life-span and who consumes the resulting intelligence. It helps to classify and make distinctions among existing threat intelligence types to better exploit them. For example, given the short lifetime of TTI indicators, it is important to determine for how much time these indicators could be useful.
We focus particularly on the TTI issues and the emerging research studies, trends and standards to mitigate these issues. Finally, we evaluate most popular open source/free threat intelligence tools.
Through our analysis, we find that (1) contrary to what is commonly thought, fast sharing of TTI is not sufficient to avoid targeted attacks; (2) trust is key for effective sharing of threat information between organizations; (3) sharing threat information improves trust and coordination for a collective response to new threats; (4) a common standardized format for sharing TI minimizes the risk of losing the quality of threat data, which provides better automated analytics solutions on large volumes of TTI.

1.2. Background

The new generation threats are no longer viruses, trojans and worms whose signatures are known to traditional defenses. Even social engineering and phishing attacks are now classified as traditional. New generation threats are multi-vectored (i.e. can use multiple means of propagation such as Web, email and applications) and multi-staged (i.e. can infiltrate networks and move laterally inside the network) (FireEye Inc. 2012). These blended, multi-stage attacks easily evade traditional security defenses, which are typically set up to inspect each attack vector as a separate path and each stage as an independent event. Thus, they do not view and analyze the attack as an orchestrated series of cyber incidents.

1.2.1. New generation threats

To bring new generation attacks into fruition, attackers are armed with the latest zero-day vulnerabilities and social engineering techniques. They utilize advanced tactics such as polymorphic threats and blended threats (Piper 2013), which are personalized to appear unknown to signature-based tools and yet authentic enough to bypass spam filters. A comprehensive taxonomy of the threat landscape is done by ENISA (The European Network and Information Security Agency) in early 2017 (ENISA 2017). In the following sections, we provide some examples of these new generation threats.

1.2.1.1. Advanced persistent threats (APTs)

APTs are examples of multi-vectored and multi-staged threats. They are defined as sophisticated network attacks (Piper 2013; FireEye Inc. 2014) in which an attacker keeps trying until they gain access to a network and stay undetected for a long period of time. The intention of an APT is to steal data rather than to cause damage to the network. APTs target organizations in sectors with high-value information, such as government agencies and financial industries.

1.2.1.2. Polymorphic threats

Polymorphic threats are cyberattacks, such as viruses, worms or trojans that constantly change (“morph”) (Piper 2013), making it nearly impossible to detect them using signature-based defenses. Evolution of polymorphic threats can occur in different ways (e.g. file name changes and file compression). Despite the changing appearance of the code in a polymorphic threat after each mutation, the essential function usually remains the same. For example, a malware intended to act as a key logger will continue to perform that function even though its signature has changed. The evolution of polymorphic threats has made them nearly impossible to detect using signature-based defenses. Vendors that manufacture signature-based security products are constantly creating and distributing new threat signatures (a ...

Table of contents

  1. Cover
  2. Introduction
  3. 1 What is Cyber Threat Intelligence and How is it Evolving?
  4. 2 Trust Management Systems: a Retrospective Study on Digital Trust
  5. 3 Risk Analysis Linked to Network Attacks
  6. 4 Analytical Overview on Secure Information Flow in Android Systems: Protecting Private Data Used by Smartphone Applications
  7. List of Authors
  8. Index
  9. End User License Agreement