Raspberry Pi User Guide
eBook - ePub

Raspberry Pi User Guide

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Raspberry Pi User Guide

About this book

Learn the Raspberry Pi 3 from the experts!

Raspberry Pi User Guide, 4th Edition is the "unofficial official" guide to everything Raspberry Pi 3. Written by the Pi's creator and a leading Pi guru, this book goes straight to the source to bring you the ultimate Raspberry Pi 3 manual. This new fourth edition has been updated to cover the Raspberry Pi 3 board and software, with detailed discussion on its wide array of configurations, languages, and applications. You'll learn how to take full advantage of the mighty Pi's full capabilities, and then expand those capabilities even more with add-on technologies. You'll write productivity and multimedia programs, and learn flexible programming languages that allow you to shape your Raspberry Pi into whatever you want it to be. If you're ready to jump right in, this book gets you started with clear, step-by-step instruction from software installation to system customization.

The Raspberry Pi's tremendous popularity has spawned an entire industry of add-ons, parts, hacks, ideas, and inventions. The movement is growing, and pushing the boundaries of possibility along with it—are you ready to be a part of it? This book is your ideal companion for claiming your piece of the Pi.

  • Get all set up with software, and connect to other devices
  • Understand Linux System Admin nomenclature and conventions
  • Write your own programs using Python and Scratch
  • Extend the Pi's capabilities with add-ons like Wi-Fi dongles, a touch screen, and more

The credit-card sized Raspberry Pi has become a global phenomenon. Created by the Raspberry Pi Foundation to get kids interested in programming, this tiny computer kick-started a movement of tinkerers, thinkers, experimenters, and inventors. Where will your Raspberry Pi 3 take you? The Raspberry Pi User Guide, 3rd Edition is your ultimate roadmap to discovery.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Raspberry Pi User Guide by Eben Upton,Gareth Halfacree in PDF and/or ePUB format, as well as other popular books in Computer Science & Systems Architecture. We have over one million books available in our catalogue for you to explore.

Information

Part I

The Board

Chapter 1 Meet the Raspberry Pi
Chapter 2 Getting Started with Raspberry Pi
Chapter 3 Linux System Administration
Chapter 4 Troubleshooting
Chapter 5 Network Configuration
Chapter 6 The Raspberry Pi Configuration Tool
Chapter 7 Advanced Raspberry Pi Configuration
Chapter 1

Meet the Raspberry Pi

YOUR RASPBERRY PI board is a miniature marvel, packing considerable computing power into a footprint no larger than a credit card. It’s capable of some amazing feats, but you need to know a few things before you plunge head first into the bramble patch.
TIP
If you’re eager to get started, skip to the next chapter to find out how to connect your Raspberry Pi to a display, keyboard, and mouse; install an operating system; and jump straight into using the Pi.

A Trip Around the Board

Since its launch as a mere two models, the Raspberry Pi family has expanded considerably. The current range consists of five mainstream models: the Raspberry Pi Model A+, Raspberry Pi Model B+, Raspberry Pi 2, Raspberry Pi 3 (see Figure 1-1), and Raspberry Pi Zero. Aside from the Zero, which is a cut-down model designed specifically for the lowest-possible cost and minimum board footprint, all models share a roughly similar design differing only in features such as the number of USB ports, presence or absence of network ports, and the power of their processor. The range also has a sixth, less-common, member: the Raspberry Pi Compute Module; designed for industrial use in customised carrier boards, the Compute Module runs the same software as its mainstream stable mates, but is otherwise beyond the scope of this book.
If you are the owner of an original-model Raspberry Pi, either the Model B or cut-down Model A, congratulations: you have a collector's item on your hands. The majority of the material in this book is entirely applicable to your boards, though there are some differences, including an inability to use add-ons adhering to the Hardware Attached on Top (HAT) standard, as described in Chapter 16, ā€œAdd-On Hardwareā€. If you find yourself needing features missing from your early board, consider retiring it and picking up a Model A+, Model B+, or faster Raspberry Pi 2 or 3; if you're on a budget, look at the cheaper Raspberry Pi Zero.
image
FIGURE 1-1: The Raspberry Pi 3
In the rough centre of all Raspberry Pi boards is a square semiconductor, more commonly known as an integrated circuit or chip. This is the system-on-chip (SoC) module, which provides the Pi with its general-purpose processing, graphics rendering, and input/output capabilities. Depending on the model, this may be the original Broadcom BCM2835, the faster quad-core BCM2836, or the more powerful still 64-bit BCM2837. In the case of the Model A+, B+, and Zero, stacked on top of that chip is another semiconductor which provides the Pi with memory for temporary storage of data while it's running programs; on the Raspberry Pi 2 and 3, this chip is instead located on the underside of the board. This type of memory is known as random access memory (RAM), because the computer can read from or write to any part of the memory at any time. RAM is volatile, meaning that anything stored in the memory is lost when the Pi loses power or is switched off.
Below the SoC are the Pi's video outputs. The wide silver connector is a High-Definition Multimedia Interface (HDMI) port, the same type of connector found on media players and many satellite and cable set-top boxes. When connected to a modern TV or monitor, the HDMI port provides high-resolution video and digital audio. A composite video port, which is designed for connection to older TVs that don't have an HDMI socket, is provided as part of the black and silver 3.5 mm AV jack to the right of the HDMI socket. The video quality is lower than is available via HDMI, and only lower-quality analogue audio can be used. You'll need a 3.5 mm AV adapter cable to use the composite video output, but you can use the analogue audio output with any standard 3.5 mm stereo audio cable.
The Raspberry Pi Zero has a somewhat different layout. In place of a full-size HDMI socket is a mini-HDMI socket, which requires a mini-HDMI to HDMI cable or adapter to connect to a TV or monitor. The Pi Zero also lacks the 3.5 mm AV jack of the larger Pi models; there is no analogue audio output by default, and composite video is available only by soldering a cable or RCA jack to the two empty holes on the upper left of the board marked TV.
The pins to the top left of the Pi compose the general-purpose input/output (GPIO) header, which you can use to connect the Pi to other hardware. The most common use for this port is to connect an add-on board. An example, the Sense HAT, is described in Chapter 16. The GPIO port is extremely powerful, but it’s fragile. When handling the Pi, always avoid touching these pins, and never connect anything to them while the Pi is switched on.
The plastic and metal connector below the GPIO port is the Display Serial Interface (DSI) port, which is used to connect digitally driven flat-panel display systems. These are rarely used because the HDMI port is more flexible, though the official Raspberry Pi touchscreen accessory is one of the few displays to make use of the port. A second plastic and metal connector, found to the right of the HDMI port, is the Camera Serial Interface (CSI) port, which provides a high-speed connection to the Raspberry Pi Camera Module. For more details on the CSI port, see Chapter 15, ā€œThe Raspberry Pi Camera Moduleā€.
The Pi Zero, again, has a different layout: there is no DSI port available on this model of Pi, and a compact CSI port is used in place of the full-size version found on the larger Pi models. This compact CSI port requires the use of an adapter cable or board to connect to the Raspberry Pi Camera Module. Older revisions of the Pi Zero have no CSI port at all and cannot use the Camera Module as a result.
At the very bottom left of the board is the Pi's power socket. This is a micro-USB socket, the same type found on most modern smartphones and tablets. Connecting a micro-USB cable to a suitable power adapter, detailed in Chapter 2, ā€œGetting Started with the Raspberry Piā€, switches the Raspberry Pi on. Unlike a desktop or laptop computer, the Pi doesn't have a power switch and will start immediately when power is connected. For the Raspberry Pi Zero, the power socket is found on the far right of the board rather than the far left.
On the underside of the Raspberry Pi board on the left-hand side is a micro-SD card slot. A Secure Digital (SD) memory card provides storage for the operating system, programs, data and other files, and is non-volatile. Unlike the volatile RAM, it will retain its information even when power is lost. In Chapter 2, you'll learn how to prepare an SD card for use with the Pi, including installing an operating system in a process known as flashing. The Pi Zero has the micro-SD card slot on the top side of the board, rather than the underside.
The right-hand edge of the Pi will hav...

Table of contents

  1. Cover
  2. Title Page
  3. Table of Contents
  4. Introduction
  5. Part I: The Board
  6. Part II: Building a Media Centre or Productivity Machine
  7. Part III: Programming the Pi
  8. Part IV: Hardware Hacking
  9. Part V: Appendixes
  10. End User License Agreement