Quantentheorie
eBook - ePub

Quantentheorie

Grundlagen der modernen Physik

  1. 128 Seiten
  2. German
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Quantentheorie

Grundlagen der modernen Physik

Über dieses Buch

Am 14.Dezember1900 hielt Max Planck einen Vortrag, der die Physik und ihr Weltbild grundlegend verändern sollte. Planck erörterte darin die Frage, wie es wohl zur spektralen Verteilung des von einem glühenden Körper ausgehenden Lichts komme. Seine spektakuläre Antwort lautete, dass diese Energie keineswegs, wie angenommen, kontinuierlich, sondern in "Päckchen", in Quanten, abgegeben wird. Damit war die Geburtsstunde der Quantenphysik eingeläutet, deren Aussagen und Konsequenzen das bis dahin geltende Weltbild in einer an sich für undenkbar gehaltenen Radikalität revolutionieren sollte. Obgleich jedoch die Quantenphysik inzwischen die klassische Physik Newtons als Grundlage unseres Verständnisses von der Natur und der ihr zugrundeliegenden physikalischen Gesetze abgelöst hat, fällt es allerdings den meisten von uns außerordentlich schwer, sich mit den Aussagen der Quantenphysik anzufreunden. Was nicht verwundert, scheint diese doch mit den meisten Erfahrungen in unserer "Alltags"-Welt in einem Ausmaß zu kollidieren, dass schon der große Physiker Niels Bohr seufzte: "Wer über die Quantentheorie nicht entsetzt ist, der hat sie nicht verstanden." Dieses Buch vermittelt einen ebenso kompakten wie sachkundigen Überblick über die wichtigsten Aussagen der Quantenphysik und deren verblüffende Konsequenzen für unser Verständnis der Natur.

Häufig gestellte Fragen

Ja, du kannst dein Abo jederzeit über den Tab Abo in deinen Kontoeinstellungen auf der Perlego-Website kündigen. Dein Abo bleibt bis zum Ende deines aktuellen Abrechnungszeitraums aktiv. Erfahre, wie du dein Abo kündigen kannst.
Derzeit stehen all unsere auf mobile Endgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Perlego bietet zwei Pläne an: Elementar and Erweitert
  • Elementar ist ideal für Lernende und Interessierte, die gerne eine Vielzahl von Themen erkunden. Greife auf die Elementar-Bibliothek mit über 800.000 professionellen Titeln und Bestsellern aus den Bereichen Wirtschaft, Persönlichkeitsentwicklung und Geisteswissenschaften zu. Mit unbegrenzter Lesezeit und Standard-Vorlesefunktion.
  • Erweitert: Perfekt für Fortgeschrittene Studenten und Akademiker, die uneingeschränkten Zugriff benötigen. Schalte über 1,4 Mio. Bücher in Hunderten von Fachgebieten frei. Der Erweitert-Plan enthält außerdem fortgeschrittene Funktionen wie Premium Read Aloud und Research Assistant.
Beide Pläne können monatlich, alle 4 Monate oder jährlich abgerechnet werden.
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ja! Du kannst die Perlego-App sowohl auf iOS- als auch auf Android-Geräten verwenden, um jederzeit und überall zu lesen – sogar offline. Perfekt für den Weg zur Arbeit oder wenn du unterwegs bist.
Bitte beachte, dass wir keine Geräte unterstützen können, die mit iOS 13 oder Android 7 oder früheren Versionen laufen. Lerne mehr über die Nutzung der App.
Ja, du hast Zugang zu Quantentheorie von Gert-Ludwig Ingold im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Biowissenschaften & Quantentheorie. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
C.H.Beck
Jahr
2015
ISBN drucken
9783406479861
eBook-ISBN:
9783406685026

1. Einleitung

Ohne Quantentheorie ist das zwanzigste Jahrhundert, wie es nun hinter uns liegt, kaum vorstellbar. Zu Beginn des Jahrhunderts schufen die größten Physiker dieser Zeit die Grundlagen für ein modernes Verständnis atomarer Vorgänge und revolutionierten dabei unser Weltbild. Die Bedeutung dieser Theorie ist jedoch keineswegs auf den mikroskopischen Bereich beschränkt, sondern reicht bis in unsere Alltagswelt hinein, auch wenn uns das häufig überhaupt nicht bewusst wird. Schon die Stabilität des Sessels, in dem Sie vielleicht gerade sitzen, lässt sich ohne Quantenphysik nicht verstehen.
Der Laser, ein Produkt der Quantenoptik, befindet sich heute nicht nur in jedem CD-Spieler, sondern wird auf vielfältige Weise, zum Beispiel in der Materialbearbeitung, eingesetzt. Seine Verwendung in der Augenmedizin ist schon Routine geworden und vielleicht wird er eines Tages den lästigen Zahnarztbohrer ersetzen können.
Die auf der Quantentheorie basierende Festkörperphysik ermöglichte erst die Entwicklung des Transistors und damit die Realisierung moderner Computer. Ohne sie hätte wohl noch kein Mensch einen Fuß auf den Mond gesetzt und das Informationszeitalter wäre noch nicht angebrochen.
Eine der folgenschwersten Entwicklungen des zwanzigsten Jahrhunderts, die Atombombe, ist eng mit der Untersuchung des Verhaltens von Atomkernen verknüpft, bei dem die Quantenphysik eine zentrale Rolle spielt. Die Kernphysik erklärt uns aber auch, wie die Energieproduktion in der Sonne abläuft, ohne die Leben auf der Erde unmöglich wäre.
Die Quantentheorie bildet die Grundlage der gesamten Chemie bis hin zur Molekularbiologie, denn nur sie kann die Mechanismen erklären, die Atome zu Molekülen zusammenbinden. Wichtige Schritte bei der Photosynthese, die den Pflanzen die Gewinnung von Energie aus Sonnenlicht ermöglicht, basieren auf Quanteneffekten.
Archäologen verwenden den radioaktiven Zerfall zur Datierung, in der Medizin kommt der Kernspintomograph zum Einsatz; die Liste ließe sich fast beliebig fortsetzen. In Kapitel 4 werden wir uns ansehen, wie Atomuhren arbeiten, die uns mit präzisen Zeitsignalen versorgen.
Diese Anwendungen und hundert Jahre Erfahrung mit Quantenphänomenen aller Art zeigen, dass wir uns auf die Quantentheorie verlassen können. Manche im Laufe der Menschheitsgeschichte lieb gewonnene Vorstellung hat in der Quantenwelt jedoch keine Gültigkeit mehr.
So ist das Konzept einer Bahn, entlang der sich ein Objekt bewegt, in der Quantentheorie nicht mehr haltbar. Dies mag manch einen irritieren, da die Vorstellung von der Existenz einer Bahn eigentlich überlebenswichtig ist. Genauso wie der jagende Steinzeitmensch die Bahn seiner Beute vorhersehen musste, um erfolgreich zu sein, so müssen wir heute in der Lage sein, die Bahn der Autos im Straßenverkehr um uns herum vorherzusehen. Das setzt natürlich zunächst voraus, dass diese Bahn überhaupt existiert. Allerdings gibt es keinen Grund, warum Erfahrungen aus der Alltagswelt im atomaren Bereich unverändert gelten sollten.
Mit der Quantentheorie hat auch ein gewisses Maß an Unbestimmtheit Einzug in die Physik gehalten. Noch im 19. Jahrhundert hatte man gedacht, dass sich die Entwicklung eines physikalischen Systems zumindest im Prinzip genau vorhersagen lässt. In der Quantentheorie ist dagegen der Ausgang einer Messung im Allgemeinen nicht mit Sicherheit vorhersagbar. Dies bedeutet allerdings keineswegs, dass nun dem Zufall Tür und Tor geöffnet wäre. Die Physik liefert weiterhin klare Aussagen, die sich experimentell überprüfen lassen.
Auch wenn die Abkehr vom klassischen Denken schwer fallen mag, so liegt hierin doch eine Herausforderung, die zum Reiz der Beschäftigung mit der Quantentheorie beiträgt. Daraus ergeben sich auch verschiedene Fragestellungen metaphysischer oder philosophischer Natur. In diesem Band wollen wir uns allerdings auf die Aspekte der Quantentheorie konzentrieren, die im physikalischen Experiment überprüft werden können.
Vor allem im frühen 20. Jahrhundert gab das Ringen um die neue Theorie Anlass zu zahllosen Diskussionen, darunter so berühmten wie zwischen Niels Bohr und Albert Einstein. Dabei wurde eine ganze Reihe von Gedankenexperimenten entwickelt, also Experimente, die im Prinzip durchführbar sind, in erster Linie aber zum Nachdenken über bestimmte Fragen hilfreich sein sollten. Manche dieser Gedankenexperimente, wie zum Beispiel das Katzenparadoxon von Schrödinger, haben es zu einiger Bekanntheit gebracht. Dennoch handelte es sich lange Zeit eben um Gedankenexperimente. Gerade in jüngerer Zeit ist es nun gelungen, einige dieser Experimente zu realisieren, wie wir in den Kapiteln 6–8 sehen werden. Die Beschäftigung mit grundlegenden Aspekten der Quantentheorie ist damit wieder ein spannendes Thema geworden.
Es gibt also eine Reihe guter Gründe, sich mit der Quantenphysik zu beschäftigen. Doch bevor wir uns auf die Entdeckungsreise in die Welt der Quanten begeben, möchte ich es nicht versäumen, mich bei zwei Forschern des Laboratoire Kastler Brossel in Paris zu bedanken. Astrid Lambrecht hat trotz anderweitiger Verpflichtungen die Zeit gefunden, eine Version des Manuskripts zu lesen. Ihre hilfreichen Kommentare sind in dieses Buch eingeflossen. Serge Haroche hat freundlicherweise der Verwendung von Daten aus seiner Arbeitsgruppe in den Abbildungen 12, 25 und 28 zugestimmt.

2. Das Markenzeichen der Quantentheorie

Oklo (Gabun), vor fast zwei Milliarden Jahren, ein unterirdisches Uranvorkommen. Wasser dringt ein. Die beim Zerfall von Uran-235-Kernen freigesetzten Neutronen werden durch das Wasser abgebremst, eine Kettenreaktion kommt in Gang. Einige hunderttausend Jahre lang läuft ein Kernreaktor unter dem afrikanischen Kontinent.
Pierrelatte im Departement Drôme (Frankreich), 1972, in einer Urananreicherungsanlage. Bei der Analyse von Gesteinsmaterial aus den Minen von Gabun bemerkt ein Techniker, dass die Proben eine ungewöhnliche Zusammensetzung aufweisen. Es dauert nicht lange, bis die Ursache klar wird, das Geheimnis von Oklo war gelüftet. Zwar hatte Enrico Fermi dreißig Jahre zuvor in Chicago den ersten von Menschenhand geschaffenen Kernreaktor in Betrieb genommen, die Natur war ihm aber um Längen zuvorgekommen.
Die prähistorischen Reaktoren in Oklo und dem benachbarten Bangombé sind trotz ihrer Einzigartigkeit heute durch Uranabbau fast vollständig zerstört. Dabei eröffnen sie die seltene Gelegenheit zu studieren, wie sich bestimmte physikalische Vorgänge vor zwei Milliarden Jahren abgespielt haben. Warum aber kann es für den Physiker überhaupt interessant sein, so weit in die Vergangenheit zurück zu blicken?

2.1 Sind Naturkonstanten eigentlich konstant?

Ziel physikalischer Forschung ist es, eine richtige Beschreibung von Vorgängen in der unbelebten Natur zu entwickeln. Lassen sich experimentelle Beobachtungen nicht erklären oder stehen sie im Widerspruch zu theoretischen Vorhersagen, so gibt es Handlungsbedarf. Bestehende Theorien müssen dann korrigiert oder erweitert werden. Gelegentlich kann es sogar notwendig sein, eine Theorie von Grund auf neu zu entwickeln. Genau dies war zu Beginn des 20. Jahrhunderts der Fall, als sich experimentelle Befunde mehrten, die sich mit den bekannten Theorien nicht beschreiben ließen. Es bedurfte des Zusammenwirkens der brillantesten Physiker dieser Zeit, um innerhalb von 25 Jahren die Quantentheorie zu schaffen, von der in diesem Buch die Rede sein soll.
Eine physikalische Theorie soll uns jedoch nicht nur heute eine richtige Beschreibung der Natur liefern. Sie hat ihren Nutzen vor allem darin, dass sie auch in der Zukunft gültig ist und es uns damit erlaubt, Vorhersagen zu machen. Es lohnt sich aber auch, Beobachtung und Theorie in der Vergangenheit zu vergleichen, und sei es vor zwei Milliarden Jahren oder noch früher. Passt alles, so wird dies das Vertrauen in die Richtigkeit der Theorie stärken. Diskrepanzen deuten dagegen darauf hin, dass es noch etwas zu verstehen gilt.
Die Informationen aus der Vergangenheit sind natürlich begrenzt. Aus den Überresten der natürlichen Reaktoren von Oklo können wir aber zum Beispiel wertvolle Informationen über den früheren Wert bestimmter Naturkonstanten gewinnen. Dabei handelt es sich um fundamentale Größen, deren Wert sich, zumindest bis heute, nicht aus einer Theorie berechnen läßt. Naturkonstanten sind häufig charakteristisch für eine bestimmte Art von Phänomenen oder auch eine physikalische Theorie.
Ein Beispiel für eine Naturkonstante ist die Lichtgeschwindigkeit, also die Geschwindigkeit, mit der sich elektromagnetische Wellen wie Licht oder Radiowellen im Vakuum ausbreiten. Bereits Galileo Galilei hatte einen Versuch zur Messung der Geschwindigkeit von Licht angestellt, der jedoch nicht von Erfolg gekrönt war. Im Jahre 1676 bestimmte Olaf Römer durch Beobachtung der Monde des Planeten Jupiter zum ersten Mal einen, wenn auch nicht sehr präzisen Wert für die Lichtgeschwindigkeit. Gegen Ende des 19. Jahrhunderts sorgten die Experimente von Albert Abraham Michelson und Edward William Morley für Aufsehen, die nachwiesen, dass die Lichtgeschwindigkeit unabhängig von der Geschwindigkeit des Bezugssystems ist.
Normalerweise addieren sich Geschwindigkeiten. Beobachten wir zum Beispiel vom Ufer aus einen Schwimmer in einem Fluss. Die Geschwindigkeit, mit der sich der Schwimmer an uns vorbeibewegt, ergibt sich dann aus zwei Beiträgen. Zur Geschwindigkeit des Schwimmers im Wasser kommt noch die Fließgeschwindigkeit des Flusses hinzu. Ähnliches würde man auch für die Geschwindigkeit von Licht erwarten, das vom Scheinwerfer eines fahrenden Autos abgestrahlt wird. Das Ergebnis von Michelson und Morley widerspricht dieser Vermutung: Unabhängig von der Geschwindigkeit des Autos ist die Geschwindigkeit des abgestrahlten Lichts immer gleich groß.
Eine Erklärung hierfür lieferte zu Beginn des 20. Jahrhunderts Albert Einstein mit seiner speziellen Relativitätstheorie. Die Lichtgeschwindigkeit spielt hierbei eine zentrale Rolle. Nur wenn Geschwindigkeiten viel kleiner sind als die Lichtgeschwindigkeit, dürfen wir die uns aus dem Alltagsleben vertraute Mechanik verwenden. Ansonsten muss die spezielle Relativitätstheorie verwendet werden, die somit die umfassendere Theorie darstellt.
Eine andere wichtige Naturkonstante ist die Elementarladung, deren Geschichte unter anderem mit dem berühmten Millikanschen Öltröpfchenversuch verknüpft ist. Alle uns heute bekannten Elementarteilchen tragen als Ladung ein ganzzahliges Vielfaches der Elementarladung und nur bei den Quarks, noch elementareren Bausteinen der Materie, muss von Ladungen ausgegangen werden, die ein oder zwei Drittel der Elementarladung betragen. Die Elementarladung kommt immer dann ins Spiel, wenn es um die elektromagnetische Wechselwirkung, zum Beispiel die Abstoßung zwischen zwei Elektronen, geht. Die Entwicklung der klassischen Theorie der Dynamik von Ladungen und ihrer Wechselwirkungen, die so genannte Elektrodynamik, kam im 19. Jahrhundert vor allem durch die maßgeblichen Beiträge von James Clerk Maxwell zu einem Abschluss.
Es gibt keine Hinweise darauf, dass die beiden genannten und auch andere Naturkonstanten sich auf Zeitskalen von Jahren oder auch Hunderten von Jahren ändern. Es ist daher verführerisch anzunehmen, dass diese Größen schon immer den gleichen Wert hatten wie heute. Experimentelle Belege hierfür zu finden, ist meistens sehr schwierig. Es gibt jedoch Ausnahmen.
Die prähistorischen Reaktoren von Oklo und Bangombé erlauben es uns, den Wert zu bestimmen, den die Feinstrukturkonstante vor zwei Milliarden Jahren hatte. Diese Naturkonstante wurde erst 1915 von Arnold Sommerfeld im Zusammenhang mit quantentheoretischen Überlegungen zum Wasserstoffatom eingeführt. Der Wert der Feinstrukturkonstanten beträgt etwa 1/137. Sie ist jedoch auf zehn Stellen genau bekannt. Um Ähnliches beim Erdumfang zu erreichen, müsste man diesen auf ein paar Millimeter genau vermessen. Die enorme Präzision, mit der man die Feinstrukturkonstante kennt, ermöglicht es, dass die Quantenelektrodynamik, also die Quantentheorie der elektromagnetischen Wechselwirkung, die am besten überprüfte physikalische Theorie ist.
Um die Wichtigkeit der Feinstrukturkonstante in der Physik zu testen, genügt es übrigens, gegenüber einem Physiker die Zahl 137 zu erwähnen. Ein Mathematiker mag dabei vielleicht an Primzahlen denken, einem Physiker wird sicherlich sofort die Feinstrukturkonstante einfallen.
Wie steht es nun um die Konstanz der Feinstrukturkonstanten? Eine Analyse der prähistorischen Daten von Oklo zeigt beruhigenderweise, dass ihr Wert vor zwei Milliarden Jahren der gleiche war wie heute. Mehr über die Vergangenheit der Feinstrukturkonstanten lässt sich mit Hilfe von Quasaren erfahren. Diese astronomischen Objekte sind aufgrund ihrer großen Entfernung von der Erde sehr gut geeignet, um noch weiter in die Vergangenheit zu schauen. Dabei zeigen neuere Analysen zwar im Wesentlichen keine Hinweise auf eine zeitliche Veränderung der Feinstrukturkonstanten. Allerdings gibt es einen bestimmten Zeitbereich, in dem die experimentellen Daten nicht mit einer konstanten Feinstrukturkonstanten in Einklang sind. Wie ernst diese Abweichungen zu nehmen sind, bleibt zum gegenwärtigen Zeitpunkt abzuwarten.
Die Feinstrukturkonstante, deren Vergangenheit wir so gut kennen, ist eigentlich eine Kombination von drei anderen Naturkonstanten. Zwei von ihnen haben wir schon kennen gelernt: die Lichtgeschwindigkeit und die Elementarladung. Der dritte Bestandteil war am Ende des 19. Jahrhunderts noch vollkommen unbekannt, als viele schon der Meinung waren, die Physik sei praktisch abgeschlossen und es gäbe nichts wesentlich Neues mehr zu entdecken. So wurde es 1874 auch dem damals sechzehnjährigen Max Planck gesagt, der Rat bei der Wahl eines Studienfaches suchte. Letztendlich entschied er sich doch gegen Musik und Altphilologie und nahm das Studium der Physik auf, eine gute Wahl, wie wir bald sehen werden. Denn es gab noch ein paar ungelöste Probleme …

2.2 Ein heißes Eisen und die Anfänge der Quantentheorie

Erhitzt man ein Stück Eisen stark genug, so wird es rot glühend. Entsprechend sendet es im sichtbaren Bereich vor allem rotes Licht aus. Hinzu kommt noch die Infrarotstrahlung, die wir wegen ihrer kleineren Frequenz zwar nicht mehr sehen können, aber dennoch als Wärmestrahlung wahrnehmen. Es wird also Strahlung in einem ganzen Frequenzbereich abgegeben. Erhitzen wir das Metall weiter, so verschiebt sich dieser Bereich in Richtung blau, also zu größeren Frequenzen hin. Schließlich wird das gesamte sichtbare Spektrum abgedeckt. Alle Regenbogenfarben ergeben zusammengenommen weiß, wir haben das Metall zur Weißglut gebracht.
Dieses lange bekannte Phänomen wurde von Physikern genauestens untersucht, seit Gustav Kirchhoff 1859 erkannt hatte, dass die Wärmestrahlung, die von einem ideal schwarzen Körper abgegeben wird, universell ist. Sie hängt also nicht von den speziellen Eigenschaften des verwendeten Materials ab, sondern einzig und allein von dessen Temperatur sowie der Frequenz der Strahlung.
Ein schwarzer Körper zeichnet sich dadurch aus, dass er alles Licht, das auf ihn fällt, absorbiert, anstatt es zu reflektieren. Einen solchen Körper zu realisieren, scheint vielleicht auf den ersten Blick nicht ganz einfach zu sein. Wie man seit 1895 weiß, genügt es jedoch, einen Hohlkörper zu nehmen und diesen mit einem winzigen Loch zu versehen. Das Loch erlaubt es einerseits, die im Hohlraum vorhandene Wärmestrahlung zu beobachten. Andererseits würde das Licht, das durch das Loch in den Hohlraum fällt, erst nach sehr vielen Reflexionen wieder nach außen gelangen, sodass es in Wirklichkeit vorher an der inneren Wand absorbiert wird.
Image
Abb. 1: Das von einem schwarzen Körper abgestrahlte Licht besitzt ein Intensitätsmaximum, das sich mit steigender Temperatur zu größeren Frequenzen hin verschiebt. Die Vorhersage der klassischen Physik (gestrichelte Linie) kann dieses Maximum nicht erklären.
Misst man die Intensität der Strahlung im Hohlraum als Funktion der Frequenz, so erhält man die in Abbildung 1 als durchgezogene Linie gezeigte Kurve. Klar ist das Maximum der Intensität zu erkennen. Da auf der Abszisse das Verhältnis von Frequenz zu Temperatur aufgetragen ist, folgt, dass mit einer Erhöhung der Temperatur eine Erhöhung der Frequenz des Intensitätsmaximums verknüpft ist. Dies ist in Einklang mit der eingangs beschriebenen Alltagserfahrung.
Allerdings ist es mit Mitteln der klassischen Physik nicht möglich, das Intensitätsmaximum zu erklären. Am Ende des 19. Jahrhunderts war man zum Beispiel durchaus in der Lage, das Verhalten bei kleinen Frequenzen zu erklären. Die theoretische Vorhersage ist im linken Teil der Abbildung 1 durch eine gestrichelte Linie angedeutet. Nimmt man dieses Resultat aber ernst, so bedeutet es, dass mit steigender Frequenz die Intensität der abgegebenen Strahlung immer mehr zunimmt. In der Summe aller Frequenzen hätte dies die katastrophale Konsequenz, dass in einem schwarzen Körper endlicher Größe unendlich viel Energie vorhanden wäre. Erst wenn die Intensität bei großen Frequenzen wieder abnimmt, kann die Energie des schwarzen Körpers endlich sein. Es ist daher wichtig, das Maximum in Abbildung 1 erklären zu können.
Das 20. Jahrhundert hatte jedoch kaum begonnen, als Max Planck, inzwischen Professor in Berlin, den Weg zum Verständnis der Schwarzkörperstrahlung wies. Damit war eine Entwicklung angestoßen, deren Konsequenzen weit über die Erklärung eines speziellen physikalischen Phänomens hinausreichen und das Jahrhundert prägen sollten.

2.3 Winzig, aber wichtig: das Plancksche Wirkungsquant

In zwei Vorträgen vor der Deutschen Physikalischen Gesellschaft in Berlin am 19. Oktober und 14. Dezember 1900 schlägt Max Planck eine Formel vor, die die Intensitätsverteilung der Strahlung eines schwarzen Körpers beschreiben soll. Noch in der Nacht nach dem ersten der beiden Vorträge unterzieht Heinrich Rubens Plancks Formel einem genauen Vergleich mit seinen Messergebnissen und stellt eine befriedigende Übereinstimmung fest, wie er Planck am nächsten Morgen berichtet. Tatsächlich ist die neue Formel besser als alle anderen, die bisher vorgeschlagen worden waren.
Heute wird oft jener 14. Dezember 1900 als Geburtsstunde der Quantentheorie angesehen, auch wenn zu diesem Zeitpunkt keinem der Zuhörer die Tragweite des Ereignisses wirklich bewusst wird. Plancks Idee ist eigentlich nicht sehr plausibel. Er nimmt an, dass die Energie einer Lichtwelle nur ganzzahlige Vielfache eines Energiequants betragen kann. Dieses Quant soll sich aus dem Produkt aus der Lichtfrequenz und einer Konst...

Inhaltsverzeichnis

  1. Cover
  2. Titel
  3. Zum Buch
  4. Über den Autor
  5. Inhalt
  6. 1. EINLEITUNG
  7. 2. DAS MARKENZEICHEN DER QUANTENTHEORIE
  8. 3. WELLE ODER TEILCHEN?
  9. 4. MASSSTÄBE UND UHREN MIT ATOMEN
  10. 5. DAS VAKUUM IST ÜBERHAUPT NICHT LEER
  11. 6. DIE SUCHE NACH DEN VERSTECKTEN VARIABLEN
  12. 7. STÖRENDE BEOBACHTUNG
  13. 8. VON DER MIKROSKOPISCHEN ZUR MAKROSKOPISCHEN WELT
  14. Quellenverweise und Literatur
  15. Register
  16. Impressum