A Seminar on Graph Theory
eBook - ePub

A Seminar on Graph Theory

Frank Harary

Buch teilen
  1. 128 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

A Seminar on Graph Theory

Frank Harary

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Presented in 1962–63 by experts at University College, London, these lectures offer a variety of perspectives on graph theory. Although the opening chapters form a coherent body of graph theoretic concepts, this volume is not a text on the subject but rather an introduction to the extensive literature of graph theory. The seminar's topics are geared toward advanced undergraduate students of mathematics.
Lectures by this volume's editor, Frank Harary, include `Some Theorems and Concepts of Graph Theory,` `Topological Concepts in Graph Theory,` `Graphical Reconstruction,` and other introductory talks. A series of invited lectures follows, featuring presentations by other authorities on the faculty of University College as well as visiting scholars. These include `Extremal Problems in Graph Theory` by Paul Erdös, `Complete Bipartite Graphs: Decomposition into Planar Subgraphs,` by Lowell W. Beineke, `Graphs and Composite Games,` by Cedric A. B. Smith, and several others.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist A Seminar on Graph Theory als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu A Seminar on Graph Theory von Frank Harary im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Mathematics & Discrete Mathematics. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2015
ISBN
9780486805146

[1]

Some Theorems and Concepts of Graph Theory

The field of graph theory is even today being independently rediscovered by scholars in various disciplines as they require its techniques for the solution of their structural and combinatorial problems. In recent years, this subject has been receiving increasing attention and interest in mathematics and other sciences. The stimulus to the renaissance of graph theory stems from its wide applicability to many fields. In fact, the theory of graphs is now quite important not only in pure mathematics (combinatorial theory), but also in theoretical physics, electrical engineering, organic chemistry, social psychology, and operational research.
It is our hope that the presentation of some historical comments and illustrations, with the statements of selected theorems, will set the stage for the remaining lectures.
We will describe four independent approaches to graph theory:
(1) Euler: Königsberg Bridge Problem.
(2) Hamilton: Around the World.
(3) Cayley, Heawood: Four-color Conjecture.
(4) Kirchhoff, Cayley, Jordan, Sylvester: Trees.

Königsberg Bridge Problem

Euler (1707-1782) became the father of graph theory, as well as the rest of topology, when he settled a famous problem of his day called the Königsberg bridge problem [4]. The area in question contains two islands linked to each other and to the banks of the Pregel River by seven bridges, as in Fig. 1.1.
The problem was to begin at any of the four land areas and, without swimming or flying or travelling around the world, cross each bridge exactly once and return to the starting point. One can see immediately that there are many ways of attempting this problem without solving it.
The considerable contribution of Euler in this case was negative, for he proved that the problem is unsolvable. He replaced each land area by a point and each bridge by a line joining the corresponding points. The result, shown in Fig. 1.2, is a collection of points with lines joining them. The points, labeled a, b, c, and d, correspond to the land areas of Fig. 1.1.
images
Fig. 1.1. The Königsberg bridge problem.
images
Fig. 1.2. The “multigraph” of the Königsberg bridge problem.
images
Fig. 1.3. A (4, 5) graph with points and lines labeled.
Since almost any two graph theorists use different terminology, and since we wish this exposition to be self-contained, we will preface a precise formulation of the problem with a rather substantial list of definitions.
A graph G consists of a finite nonempty set V of points and a set X of lines, each of which joins two distinct points. We assume that distinct lines do not join the same pair of points; otherwise, as in Fig. 1.2, the configuration is a multigraph. Furthermore, if we permit loops, that is, lines joining a point with itself, the result is a general graph. A (p, q) graph has p points and q lines. The number of points in a graph is called its order. Fig. 1.3 shows a (4, 5) graph with points and lines labeled, i.e., designated by symbols.
The two points joined by a line are adjacent, and each is incident with the line. Two graphs are isomorphic if there is a one-to-one correspondence between their sets of points preserving adjacency. The degree d(v) of a point v is the number of lines incident with it. A point of degree 0 is isolated, and the graph consisting of such a point is called trivial. In a regular graph all points have the same degree. A regular graph in which every point has degree 3 is called cubic. The complete graph Kp of order p has every pair of its points adjacent and so is regular of degree p – 1. All the complete graphs with up to five points are shown in Fig. 1.4.
A walk in a graph G is an alternating sequence of points and lines of G, beginning and ending with a point, in which each line is incident with the point preceding it and the point following it. A walk of the form v1, x1, v2, x2, v3 · · ·, vn is said to join v1 with vn. The length of a walk is the number of occurrences of lines in it. A trail is a walk in which all lines are distinct. A path is a walk in which all points (and hence all lines) are distinct. A closed walk has the same first and last points. The walk v1, x1, v2, x2, · · ·,vn is often written v1v2· · ·vn, the lines being evident by context. A cycle is a closed walk v1v2· · ·vnv1, n ≥ 3, in which the n points vi are distinct. A spanning walk (spanning path, spanning cycle, and so on) contains all the points of G.
Some of these concepts are illustrated in Fig. 1.3. The walk v1v2v3v4. is a path; in fact, it is a spanning path. The cycle v1v2v4v1 has length 3, and v2v1v4v2v3vA, is a trail containing all lines.
In a connected graph, every pair of distinct points is joined by a path. A subgraph of G consists of subsets of V and X which themselves form a graph.
images
Fig. 1.4. The smallest complete graphs.
A component of G is a maximal connected subgraph. Ob...

Inhaltsverzeichnis