Introductory Discrete Mathematics
eBook - ePub

Introductory Discrete Mathematics

V. K . Balakrishnan

Buch teilen
  1. 256 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Introductory Discrete Mathematics

V. K . Balakrishnan

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.
Chapters 0–3 cover fundamental operations involving sets and the principle of mathematical induction, and standard combinatorial topics: basic counting principles, permutations, combinations, the inclusion-exclusion principle, generating functions, recurrence relations, and an introduction to the analysis of algorithms. Applications are emphasized wherever possible and more than 200 exercises at the ends of these chapters help students test their grasp of the material.
Chapters 4 and 5 survey graphs and digraphs, including their connectedness properties, applications of graph coloring, and more, with stress on applications to coding and other related problems. Two important problems in network optimization ― the minimal spanning tree problem and the shortest distance problem ― are covered in the last two chapters. A very brief nontechnical exposition of the theory of computational complexity and NP-completeness is outlined in the appendix.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Introductory Discrete Mathematics als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Introductory Discrete Mathematics von V. K . Balakrishnan im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Matemáticas & Matemáticas discretas. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

image
Combinatorics
1.1TWO BASIC COUNTING RULES
Combinatorics is one of the fastest-growing areas of modern mathematics. It has many applications to several areas of mathematics and is concerned primarily with the study of finite or discrete sets (much as the set of integers) and various structures on these sets, such as arrangements, combinations, assignments, and configurations. Broadly speaking, three kinds of problems arise while studying these sets and structures on them: (1) the existence problem, (2) the counting problem, and (3) the optimization problem. The existence problem is concerned with the following question: Does there exist at least one arrangement of a given kind? The counting problem, on the other hand, seeks to find the number of possible arrangements or configurations of a certain pattern. The problem of finding the most efficient arrangement of a given pattern is the optimization problem. In this chapter we study techniques for solving problems that involve counting. These techniques form a basis for the study of enumerative combinatorics, which is really the theory of counting where results involving counting are obtained without carrying out the exact counting process, which could be tedious.
Suppose that there are 10 mathematics majors and 15 computer science majors in a class of 25 and we are required to choose a student from the class to represent mathematics and another student to represent computer science. Now there are 10 ways of choosing a mathematics major and 15 ways of choosing a computer science major from the class. Furthermore, the act of choosing a student from one area in no way depends on the act of choosing a student from the other. So it is intuitively obvious that there are 10 × 15 = 150 ways of selecting a representative from mathematics and a representative from computer science. On the other hand, if we are required to select one representative from mathematics or from computer science, we have only 10 + 15 = 25 ways of accomplishing this. In the former case we used the multiplication rule of counting and in the latter the addition rule. These two rules can be stated formally as follows.
MULTIPLICATION RULE (The Rule of Sequential Counting)
Suppose that there is a sequence of r events E1, E2, . . . , Er such that (1) there are ni ways in which Ei(i = 1, 2, . . . , r) can occur, and (2) the number of ways an event in the sequence can occur does not depend on how the events in the sequence prior to that event occurred. Then there are (n1) · (n2) · . . . · (nr) ways in which all the events in the sequence can occur.
ADDITION RULE (The Rule of Disjunctive Counting)
Suppose that there are r events E1, E2, . . . , Er such that (1) there are ni outcomes for Ei(i = 1, 2, . . . , r), and (2) no two events can occur simultaneously. Then there are (n1) + (n2) + · · · + (nr) ways in which one of these r events can take place.
These two elementary rules are very useful in solving counting problems without carrying out explicit enumeration. However, if one is not careful, they are likely to be misused, producing erroneous results, as may be seen from some of the examples we discuss in what follows.
Example 1.1.1
There are five characters—two letters of the alphabet followed by three digits—which appear on the back of one series of a microcomputer made by an electronics company. The number of possible computers manufactured in this series is (1) 26 × 26 × 10 × 10 × 10 = 676,000 if characters can repeat, (2) 26 × 25 × 10 × 10 × 10 = 650,000 if letters cannot repeat, and (3) 26 × 25 × 10 × 9 × 8 = 468,000 if no characters can repeat. We use the multiplication rule here.
Example 1.1.2
A professor has 25 students in her advanced calculus course and 31 students in her statistics course. Thirteen students have signed up for both the courses. There are three events here, no two of which can occur simultaneously: (1) The event that a student chosen at...

Inhaltsverzeichnis