Elements of Gas Dynamics
eBook - ePub

Elements of Gas Dynamics

H. W. Liepmann, A. Roshko

Buch teilen
  1. 464 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Elements of Gas Dynamics

H. W. Liepmann, A. Roshko

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

The increasing importance of concepts from compressible fluid flow theory for aeronautical applications makes the republication of this first-rate text particularly timely. Intended mainly for aeronautics students, the text will also be helpful to practicing engineers and scientists who work on problems involving the aerodynamics of compressible fluids.
Covering the general principles of gas dynamics to provide a working understanding of the essentials of gas flow, the contents of this book form the foundation for a study of the specialized literature and should give the necessary background for reading original papers on the subject. Topics include introductory concepts from thermodynamics, including entropy, reciprocity relations, equilibrium conditions, the law of mass action and condensation; one-dimensional gasdynamics, one-dimensional wave motion, waves in supersonic flow, flow in ducts and wind tunnels, methods of measurement, the equations of frictionless flow, small-perturbation theory, transonic flow, effects of viscosity and conductivity, and much more. The text includes numerous detailed figures and several useful tables, while concluding exercises demonstrate the application of the material in the text and outline additional subjects.
Advanced undergraduate or graduate physics and engineering students with at least a working knowledge of calculus and basic physics will profit immensely from studying this outstanding volume.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Elements of Gas Dynamics als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Elements of Gas Dynamics von H. W. Liepmann, A. Roshko im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Technology & Engineering & Aeronautic & Astronautic Engineering. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.
CHAPTER 1
Concepts from Thermodynamics
1.1 Introduction
The basis of any physical theory is a set of experimental results. From these special primary observations, general principles are abstracted, which can be formulated in words or in mathematical equations. These principles are then applied to correlate and explain a group of physical phenomena and to predict new ones.
The experimental basis of thermodynamics is formalized in the so-called principal laws. The law of conservation of energy, which thermodynamics shares with mechanics, electrodynamics, etc., is one of these principal laws. It introduces the concept of internal energy of a system. The other principal laws of thermodynamics introduce and define the properties of entropy and temperature, the two concepts which are particular and fundamental for thermodynamics.
The principles laid down in these fundamental laws apply to the relations between equilibrium states of matter in bulk. For instance, thermodynamics yields the relation between the specific heats at constant pressure and at constant volume; it relates the temperature dependence of the vapor pressure to the latent heat of evaporization; it gives upper bounds for the efficiency of cyclic processes, etc.
Fluid mechanics of perfect fluids, i.e., fluids without viscosity and heat conductivity, is an extension of equilibrium thermodynamics to moving fluids. The kinetic energy of the fluid has now to be considered in addition to the internal energy which the fluid possesses when at rest. The ratio of this kinetic energy per unit mass to the internal energy per unit mass is a characteristic dimensionless quantity of the flow problem and in the simplest cases is directly proportional to the square of the Mach number. Thermodynamic results are taken over to perfect fluid flow almost directly.
Fluid mechanics of real fluids goes beyond classical thermodynamics. The transport processes of momentum and heat are of primary interest here, and a system through which momentum, heat, matter, etc., are being transported is not in a state of thermodynamic equilibrium, except in some rather trivial cases, such as uniform flow of matter through a fixed system.
But, even though thermodynamics is not fully and directly applicable to all phases of real fluid flow, it is often extremely helpful in relating the initial and final conditions. This complex of problems is best illustrated with a simple example. Assume a closed, heat-insulating container divided into two compartments by a diaphragm. The compartments contain the same gas but at different pressures p1 and p2, and different temperatures T1 and T2. If the diaphragm is removed suddenly, a complicated system of shock and expansion waves occurs, and finally subsides due to viscous damping. Thermodynamics predicts the pressure and temperature in this final state easily. Fluid mechanics of a real fluid should tackle the far more difficult task of computing the pressure, temperature, etc., as a function of time and location within the container. For large times, pressure and temperature will approach the thermodynamically given values. Sometimes we need only these final, equilibrium values and hence can make very good use of thermodynamic reasoning even for problems that involve real fluid flow.
In fluid mechanics of low-speed flow, thermodynamic considerations are not needed: the heat content of the fluid is then so large compared to the kinetic energy of the flow that the temperature remains nearly constant even if the whole kinetic energy is transformed into heat.
In modern high-speed flow problems, the opposite can be true. The kinetic energy can be large compared to the heat content of the moving gas, and the variations in temperature can becom...

Inhaltsverzeichnis