Invariants of Quadratic Differential Forms
eBook - ePub

Invariants of Quadratic Differential Forms

Joseph Edmund Wright

  1. 96 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Invariants of Quadratic Differential Forms

Joseph Edmund Wright

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

This classic monograph by a mathematician affiliated with Trinity College, Cambridge, offers a brief account of the invariant theory connected with a single quadratic differential form. Suitable for advanced undergraduates and graduate students of mathematics, it avoids unnecessary analysis and offers an accessible view of the field for readers unfamiliar with the subject.
A historical overview is followed by considerations of the methods of Christoffel and Lie as well as Maschke's symbolic method and explorations of geometrical and dynamical methods. The final chapter on applications, which draws upon developments by Ricci and Levi-Civita, presents the most successful method and can be read independently of the rest of the book.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Invariants of Quadratic Differential Forms als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Invariants of Quadratic Differential Forms von Joseph Edmund Wright im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Matematica & Geometria differenziale. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2013
ISBN
9780486316307

CHAPTER I

HISTORICAL

4. Group.
Invariance necessarily carries with it the idea of a transformation. Suppose we have a set of transformations in any variables whatever, and suppose that each of the set leaves a certain function of these variables invariant, then any transformation compounded of two or more of the set will also leave that function invariant. If any such transformation as this is not one of the original set we add it to that set, and we may thus continue adding new transformations until we reach a closed set, that is one such that if you apply in turn any two of its transformations the result is another of its transformations. Such a set is called a GROUP, and it is clear that any invariant whatever is invariant under a group of transformations.
5. In the case considered in the preceding pages there are a certain number of quadratic differential forms
image
together with a certain number of functions ϕ (x1,..., xn), and the group of transformations xi = xi (y1,..., yn),(i = 1,..., n), and we suppose that under a member of this group
image
becomes
image
and that ϕ becomes ϕ′. Then there are deducible relations for a′rs, ϕ′, and their various derivatives with respect to the y’s and for dx1,..., dxn in terms of the original magnitudes ars, ϕ, etc. In other words there exists a set of transformations for all the variables mentioned. It may be proved that this set is a group, and this group is said to be extended from the original group. Our problem is the determination of all the invariants of this extended group.
6. Christoffel.
There have been three main methods of attack. The first, historically, is by comparison of the original and transformed forms, and in this way invariants are obtained by direct processes. The fundamental work in this direction is due to Christoffel* (1869), though the first example of an invariant, the quantity K, was given by Gauss in 1827. Invariants which involve the derivatives of the functions are called differential parameters. Lamé, using the linear element in space given by ds2 = dx2 + dy2 + dz2 gave this name to the two invariants
image
and Beltrami § adopted it for the invariants that he discovered, those involving first and second derivatives of a function ϕ, taken with a form in two variables.
In the course of Christoffel’s work there arise certain functions (ikrs); these were originally found by Riemann in 1861 in his investigations on the curvature of hypersurfaces. For a surface in space they reduce to the one quantity K
7. Ricci and Levi-Civita.
To Christoffel is due a method whereby from invariants involving derivatives of the fundamental form and of the functions ϕ may be derived invariants involving higher derivatives. This process has been called by Ricci and Levi-Civita covariant derivation, and they have made it the base of their researches in this subject. These researches have been collected and given by them in complete form in the Mathematische Annalen||, and on their work they have based a calculus which they call Absolute differential calculus. They give a complete solution of the problem, and show that in order to determine all differential invariants of order μ, it is sufficient to determine the algebraic invariants of the system:
(1) The fundamental differential quantic,
(2) The covariant derivatives of the arbitrary functions ϕ up to the order μ,
(3) A certain quadrilinear form G4 and its covariant derivatives up to the order μ – 2*.
8. Lie.
The second method is founded on the theory of groups of Lie, and is a direct application of the theory given in his paper Ueber Differentialinvarianten. This theory involves the use of infinitesimal transformations, and the invariants are obtained a...

Inhaltsverzeichnis

  1. Cover
  2. Title Page
  3. Copyright Page
  4. Preface
  5. Contents
  6. Introduction
  7. Chapter I Historical
  8. Chapter II The Method of Christoffel
  9. Chapter III The Method of Lie
  10. Chapter IV Maschke’s Symbolic Method
  11. Chapter V Applications: Geometrical