Die Übersetzung der englischen Originalausgabe "Speakable and Unspeakable in Quantum Mechanics" enthält sowohl alle publizierten als auch unpublizierten Artikel John Bells über die konzeptionellen und philosophischen Probleme der Quantenmechanik wie z.B. "Über das Einstein-Podolsky-Rosen-Paradoxon", "Bertlmanns Socken und das Wesen der Realität" oder "Sechs mögliche Welten der Quantenmechanik". Für unser heutiges Verständnis von Quantenkonzepten und ihrer eingeschränkten Verwendbarkeit auf klassische Vorstellungen von Raum, Zeit und Lokalität haben seine Arbeiten eine herausragende Rolle gespielt.
Nach einem kurzen Vorwort von John Bell erläutert Alain Aspect den gewaltigen Beitrag, den John Bell in der Quantenphilosophie geleistet hat.
Häufig gestellte Fragen
Ja, du kannst dein Abo jederzeit über den Tab Abo in deinen Kontoeinstellungen auf der Perlego-Website kündigen. Dein Abo bleibt bis zum Ende deines aktuellen Abrechnungszeitraums aktiv. Erfahre, wie du dein Abo kündigen kannst.
Derzeit stehen all unsere auf mobile Endgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Perlego bietet zwei Pläne an: Elementar and Erweitert
Elementar ist ideal für Lernende und Interessierte, die gerne eine Vielzahl von Themen erkunden. Greife auf die Elementar-Bibliothek mit über 800.000 professionellen Titeln und Bestsellern aus den Bereichen Wirtschaft, Persönlichkeitsentwicklung und Geisteswissenschaften zu. Mit unbegrenzter Lesezeit und Standard-Vorlesefunktion.
Erweitert: Perfekt für Fortgeschrittene Studenten und Akademiker, die uneingeschränkten Zugriff benötigen. Schalte über 1,4 Mio. Bücher in Hunderten von Fachgebieten frei. Der Erweitert-Plan enthält außerdem fortgeschrittene Funktionen wie Premium Read Aloud und Research Assistant.
Beide Pläne können monatlich, alle 4 Monate oder jährlich abgerechnet werden.
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ja! Du kannst die Perlego-App sowohl auf iOS- als auch auf Android-Geräten verwenden, um jederzeit und überall zu lesen – sogar offline. Perfekt für den Weg zur Arbeit oder wenn du unterwegs bist. Bitte beachte, dass wir keine Geräte unterstützen können, die mit iOS 13 oder Android 7 oder früheren Versionen laufen. Lerne mehr über die Nutzung der App.
Ja, du hast Zugang zu Quantenmechanik von John S. Bell im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Naturwissenschaften & Quantentheorie. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.
1Über das Problem der verborgenen Variablen in der Quantenmechanik
Die Arbeit wurde unterstützt durch die U.S. Atomic Energy Commission. Stanford Linear Accelerator Center, Stanford University, Stanford, California.
1.1Einleitung
Die Kenntnis des quantenmechanischen Zustands eines Systems bedeutet im allgemeinen nur statistische Einschränkungen für die Ergebnisse von Messungen. Es scheint interessant, zu fragen, ob man sich dieses statistische Element (wie in der klassischen Mechanik) als Folge vorstellen soll – weil die fraglichen Zustände Mittelwerte von besser definierten Zuständen sind, für die die individuellen Ergebnisse vollständig bestimmt wären. Diese hypothetischen, “dispersionsfreien” Zustände wären dann nicht nur durch den quantenmechanischen Zustandsvektor gekennzeichnet, sondern auch durch zusätzliche “verborgene Variablen” – “verborgen” deshalb, weil, wenn Zustände mit vorgegebenen Werten dieser Variablen hergestellt werden könnten, die Quantenmechanik im Hinblick auf die Observablen unzulänglich wäre.
Ob diese Frage tatsächlich interessant ist, ist diskutiert worden [1,2]. Dieser Artikel trägt nicht zu dieser Diskussion bei. Er ist an diejenigen gerichtet, die die Frage interessant finden; und insbesondere diejenigen unter ihnen, die glauben, dass “die Frage nach der Existenz solcher verborgenen Variablen eine frühzeitige und ziemlich endgültige Antwort durch von Neumanns Beweisüber die mathematische Unmöglichkeit solcher Variablen in der Quantentheorie bekam“ [3]. Hier wird ein Versuch unternommen zu klären, was von Neumann und seine Nachfolger tatsächlich demonstriert haben. Er beinhaltet sowohl von Neumanns Abhandlung, als auch die neuere Version des Arguments von Jauch und Piron [3], und das strengere Resultat aus der Arbeit von Gleason [4]. Es wird ins Feld geführt, dass diese Analysen die wirkliche Frage nicht berühren. Vielmehr wird zu sehen sein, dass diese Demonstrationen von den hypothetischen dispersionsfreien Zuständen nicht nur erfordern, dass geeignete Ensembles davon alle messbaren Eigenschaften von quantenmechanischen Zuständen haben sollten, sondern außerdem bestimmte andere Eigenschaften. Diese zusätzlichen Forderungen erscheinen vernünftig, wenn die Messergebnisse in grober Weise mit den Eigenschaften isolierter Systeme identifiziert werden. Sie müssen als völlig unvernünftig angesehen werden, wenn man mit Bohr [5] erinnert an “die Unmöglichkeit einer scharfen Trennung zwischen dem Verhalten atomarer Objekte und der Wechselwirkung mit den Messinstrumenten, die dazu dienen, die Bedingungen zu definieren, unter denen die Phänomene erscheinen.”
Die Erkenntnis, dass von Neumanns Beweis eine begrenzte Bedeutung hat, hat seit der Arbeit von Bohm [6] 1952 an Boden gewonnen. Sie ist jedoch bei weitem nicht allgemein verbreitet. Darüber hinaus hat der Verfasser in der Literatur keine entsprechende Analyse gefunden, was falsch gelaufen ist [7]. Wie alle Autoren von unbeauftragten Reviews glaubt er, dass er diese Situation mit solcher Klarheit und Einfachheit neu darstellen kann, dass alle früheren Diskussionen in den Schatten gestellt werden.
1.2Annahmen und ein einfaches Beispiel
Die Autoren der zu besprechenden Demonstrationen waren darauf bedacht, so wenig wie möglichüber Quantenmechanik vorauszusetzen. Das ist für manche Zwecke nützlich, aber nicht für unsere. Wir sind nur an der Möglichkeit von verborgenen Variablen in der gewöhnlichen Quantenmechanik interessiert und werden von allenüblichen Notationen reichlich Gebrauch machen. Dadurch werden die Demonstrationen wesentlich abgekürzt.
Es wird angenommen, dass ein quantenmechanisches “System” “Observablen” besitzt, die durch hermitesche Operatoren in einem komplexen linearen Vektorraum dargestellt werden. Jede “Messung” einer Observablen ergibt einen der Eigenwerte des entsprechenden Operators. Observablen mit kommutierenden Operatoren können gleichzeitig gemessen werden [8]. Ein quantenmechanischer “Zustand” wird durch einen Vektor im linearen Zustandsraum dargestellt. Für einen Zustandsvektor ψ ist der statistische Erwartungswert einer Observablen, mit dem Operator O, das normierte innere Produkt (ψ ,Oψ )/(ψ ,ψ).
Die strittige Frage lautet, ob quantenmechanische Zustände als Ensembles von Zuständen betrachtet werden können – die weiter durch zusätzliche Variablen derart spezifiziert sind, dass gegebene Werte dieser Variablen (zusammen mit dem Zustandsvektor) die Ergebnisse individueller Messungen eindeutig festlegen. Diese hypothetischen, wohldefinierten Zustände werden “dispersionsfrei” genannt.
In der folgenden Diskussion ist es nützlich, sich als einfaches Beispiel ein System mit zweidimensionalem Zustandsvektor vorzustellen. Wir betrachten zur Verdeutlichung ein Spin
Teilchen ohne Translationsbewegung. Ein solcher quantenmechanischer Zustand wird durch einen zweikomponentigen Zustandsvektor (oder Spinor) ψ dargestellt. Die Observablen werden durch hermitesche 2 × 2-Matrizen dargestellt
worin α eine reelle Zahl ist, β ein reeller Vektor ist und σ als Komponenten die Pauli-Matrizen hat; α ist zu verstehen als Faktor mit der Einheitsmatrix. Die Messung einer solchen Observablen ergibt einen der Eigenwerte
mit relativen Wahrscheinlichkeiten, die aus dem Erwartungswert
abgeleitet werden. Für dieses System kann ein Schema mit verborgenen Variablen folgendermaßen hinzugefügt werden: Die dispersionsfreien Zustände werden sowohl durch eine reelle Zahl λ im Intervall −
≤ λ ≤
, als auch den Spinor ˝ spezifiziert. Um zu beschreiben, wie λ bestimmt, welchen Eigenwert die Messung ergibt, bemerken wir, dass ψ durch eine Drehung des Koordinatensystems in die Form gebracht werden kann
.
Es seien βx,βy,βz die Komponenten von β im neuen Koordinatensystem. Dann ergibt die Messung von α +β .σ für den durch ψ und λ...
Inhaltsverzeichnis
Cover
Titelseite
Impressum
Inhaltsverzeichnis
J. S. Bell: Artikel zur Quantenphilosophie
Vorwort zur ersten englischen Originalauflage
Geleitwort des Übersetzers
Einführung: John Bell und die zweite Quantenrevolution
1 Über das Problem der verborgenen Variablen in der Quantenmechanik
2 Über das Einstein-Podolsky-Rosen-Paradoxon
3 Der „moralische“ Aspekt der Quantenmechanik
4 Einführung in die Frage der verborgenen Variablen
5 Subjekt und Objekt
6 Über die Reduktion des Wellenpakets im Coleman-Hepp-Modell
7 Die Theorie der lokalen „beables“
8 Lokalität in der Quantenmechanik: Antwort an Kritiker
9 Wie soll man spezielle Relativität lehren?
10 Einstein-Podolsky-Rosen-Experimente
11 Die Theorie der Messung von Everett und de Broglies Führungswelle
12 Freie Variablen und lokale Kausalität
13 Atomkaskaden-Photonen und quantenmechanische Nichtlokalität
14 de Broglie-Bohm, Doppelspalt-Experiment und Dichtematrix
15 Quantenmechanik für Kosmologen
16 Bertlmanns Socken und das Wesen der Realität
17 Über die unmögliche Führungswelle
18 „Aussprechbares“ und „Unaussprechliches“ in der Quantenmechanik