
- 411 Seiten
- German
- PDF
- Über iOS und Android verfügbar
Über dieses Buch
Das Buch zeigt, inwiefern nicht, wie man üblicherweise sagt, die Arithmetik, Logik und Mengenlehre, sondern die Geometrie die Königin der Mathematik ist, weil nämlich die oft verpönte Anschauung allen ihren Axiomatisierungen und Anwendungen zugrunde liegt, und zwar in der Form eines diagrammtheoretischen Strukturmodells. Dessen Punkte, Geraden und Ebenen sind selbst immer schon raumlose Teilformen idealer Formen. Zu den 'reellen Zahlen' als reine Größenproportionen gelangt man durch Ausweitung des Punktbereiches zunächst über den Fundamentalsatz der Algebra. Aber erst Cantors Naive Mengenlehre liefert genügend Nullstellen für beliebige stetige Funktionen. Dabei ist die euklidische Geometrie eine Theorie der Körperformen, während für jede Theorie des Raumes, in dem sich Körper bewegen, immer auch schon die Zeit mathematisiert werden muss, so dass der Bewegungsraum nie einfach 'dreidimensional' ist. Diese Unterscheidung zum Anschauungsraum geformter Körper macht das vierdimensionale Minkowski-Modell der Raum-Zeit in Einsteins spezieller Relativitätstheorie allererst voll begreifbar, zumal sich im empiristischen bzw. konventionalistischen Ansatz Reichenbachs, Grünbaums und vieler anderer Autoren deutliche Mängel finden.
Häufig gestellte Fragen
- Elementar ist ideal für Lernende und Interessierte, die gerne eine Vielzahl von Themen erkunden. Greife auf die Elementar-Bibliothek mit über 800.000 professionellen Titeln und Bestsellern aus den Bereichen Wirtschaft, Persönlichkeitsentwicklung und Geisteswissenschaften zu. Mit unbegrenzter Lesezeit und Standard-Vorlesefunktion.
- Erweitert: Perfekt für Fortgeschrittene Studenten und Akademiker, die uneingeschränkten Zugriff benötigen. Schalte über 1,4 Mio. Bücher in Hunderten von Fachgebieten frei. Der Erweitert-Plan enthält außerdem fortgeschrittene Funktionen wie Premium Read Aloud und Research Assistant.
Bitte beachte, dass wir keine Geräte unterstützen können, die mit iOS 13 oder Android 7 oder früheren Versionen laufen. Lerne mehr über die Nutzung der App.
Information
Inhaltsverzeichnis
- Frontmatter
- Inhalt
- Einleitung
- 1. Kapitel. Anschauung, Form und Begriff
- 2. Kapitel. Norm und Ideal
- 3. Kapitel. Konstruktionen und Demonstrationen
- 4. Kapitel. Vom Konkreten zum Abstrakten: Zahlen, Formen und Punkte als mathematische Gegenstände
- 5. Kapitel. Axiomatische, algebraische und analytische Geometrie
- 6. Kapitel. Geometrische Invariantentheorien und das Raumproblem
- 7. Kapitel. Kinematik und der Begriff der Zeit
- 8. Kapitel. Zeit und Raum in der (speziellen) Relativitätstheorie
- Backmatter