Characterization of Nanocomposites
eBook - ePub

Characterization of Nanocomposites

Technology and Industrial Applications

Frank Abdi, Mohit Garg, Frank Abdi, Mohit Garg

Buch teilen
  1. 486 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Characterization of Nanocomposites

Technology and Industrial Applications

Frank Abdi, Mohit Garg, Frank Abdi, Mohit Garg

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

These days, advanced multiscale hybrid materials are being produced in the industry, studied by universities, and used in several applications. Unlike for macromaterials, it is difficult to obtain the physical, mechanical, electrical, and thermal properties of nanomaterials because of the scale. Designers, however, must have knowledge of these properties to perform any finite element analysis or durability and damage tolerance analysis. This is the book that brings this knowledge within easy reach.

What makes the book unique is the fact that its approach that combines multiscale multiphysics and statistical analysis with multiscale progressive failure analysis. The combination gives a very powerful tool for minimizing tests, improving accuracy, and understanding the effect of the statistical nature of materials, in addition to the mechanics of advanced multiscale materials, all the way to failure. The book focuses on obtaining valid mechanical properties of nanocomposite materials by accurate prediction and observed physical tests, as well as by evaluation of test anomalies of advanced multiscale nanocomposites containing nanoparticles of different shapes, such as chopped fiber, spherical, and platelet, in polymeric, ceramic, and metallic materials. The prediction capability covers delamination, fracture toughness, impact resistance, conductivity, and fire resistance of nanocomposites. The methodology employs a high-fidelity procedure backed with comparison of predictions with test data for various types of static, fatigue, dynamic, and crack growth problems. Using the proposed approach, a good correlation between the simulation and experimental data is established.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Characterization of Nanocomposites als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Characterization of Nanocomposites von Frank Abdi, Mohit Garg, Frank Abdi, Mohit Garg im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Sciences physiques & Chimie physique et théorique. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Chapter 1

Nanostructure Bulk Property Predictions Using Molecular Mechanics

Jerry Housner and Frank Abdi

AlphaStar Corporation, 5150 E. Pacific Coast Highway, Suite 650, Long Beach, CA 90804, USA
Molecular mechanics is powerful tool for developing some of the fundamental bulk properties of nanostructures. It is shown in this chapter how many researchers and engineers have successfully used molecular mechanics, and the results they achieved as well as some of the challenges they faced. The intent of this chapter is not to provide new research findings but to lay out for the reader some of concepts for developing bulk properties of nanostructures using molecular mechanics and molecular dynamics with the cited references providing the details.

1.1 Introduction

The great majority of the models that engineers use are continuum based. For example, concrete is made of particles of various sizes and in addition is often reinforced by steel rods. Yet engineers design concrete structures essentially as continua. Indeed, nearly all structures tend to be treated as a continuum. This makes it possible to use continuum mechanics, beam equations, plate and shell theory, and the finite element method.
The bulk properties of the continuum, such as its constitutive properties and its strength, have been traditionally derived from test, and standard test methods such as ASTM have been developed. Once the bulk properties are derived, they become input to computer codes such as finite element programs. The traditional testing approach has proven satisfactory for many material systems. For example, for many metals, databases of properties established by test have been established. These databases may provide mean test values as well as statistical information concerning their probabilistic scatter derived from the replicas tested. However, in the age of composite materials, the traditional approach of depending solely on test has become cumbersome. This is because composites present an essentially unlimited number of material systems, so databases are limited.
In the case of composites, instead of testing the composite for its properties, one may test the constituents for their properties and then use material laws and assumptions to derive the composite properties. However, even this approach has its difficulties because some of the constituents making up the composite can be challenging to test and these difficulties invariably translate into time and money, each of which are limited resources.
In this chapter, attention is focused on composites containing nanomaterials. The nanomaterials may take the form of carbon nanotubes (CNTs) (Fig. 1.1) or another nanostructure such as nanoplatelets (Fig. 1.2). A CNT may have polymers attached to its surface (Fig. 1.3) to enhance its bonding with a composite’s resin system. The process of enhancing a CNT’s ability to bond with the surrounding resin is called “functionalization” of the CNT. The functionalization may change some of the properties of the CNT for better or for worse.
As Valavala1 points out, nanostructures are very valuable to nanocomposites, particularly if they adhere well to the surrounding medium they are in. Exploring whether this is taking place may be best left to analysis rather than test since many cases will need to be considered and testing of nanostructures can be challenging. Validation would be left to test.
Image
Figure 1.1 Carbon nanotube.
Image
Figure 1.2 Nanoplatelet.
Image
Figure 1.3 Functionalized carbon nanotube.
Many researchers, engineers, and others have sought to derive the properties of nanomaterials from molecular mechanics (MM) and there has been a large measure of success in doing so. The purpose of this chapter is to review some of the MM methodologies that have been developed and that can be used to derive the bulk properties of nanomaterials useful to nanocomposite engineering.
The intended reader of this chapter is the practicing engineer. It is not the intent of this chapter to provide derivations of formulas presented or to present detailed explanations of molecular chemistry or any new information that has not already been published. Rather, all equations and results in the chapter have been published previously and appropriate credit is rightfully given to the authors.

1.1.1 Modeling of the Atomistic Domain Using Molecular Mechanics and Dynamics

The molecular nanostructure is composed of many atoms. The most accurate approach, known to date, in modeling the nanostructure atomistic domain would be to do so using quantum mechanics. Quantum mechanics involves modeling electron densities based on Schrodinger’s equation. It would effectively model all the attractive and repelling forces in the nanostructure, including possib...

Inhaltsverzeichnis