Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices
eBook - ePub

Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices

Vijay B. Pawade, Paresh H. Salame, Bharat Apparao Bhanvase, Vijay B. Pawade, Paresh H. Salame, Bharat Apparao Bhanvase

Buch teilen
  1. 328 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices

Vijay B. Pawade, Paresh H. Salame, Bharat Apparao Bhanvase, Vijay B. Pawade, Paresh H. Salame, Bharat Apparao Bhanvase

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Metal oxide nanoparticles exhibit potential applications in energy and environmental fields, such as solar cells, fuel cells, hydrogen energy, and energy storage devices. This book covers all points from synthesis, properties, and applications of transition metal oxide nanoparticle materials in energy storage and conversion devices. Aimed at graduate-level students and researchers associated with the energy and environment sector, this book addresses the application of nontoxic and environmentally friendly metal oxide materials for a clean environment and deals with synthesis properties and application metal oxides materials for energy conversion, energy storage, and hydrogen generation.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices von Vijay B. Pawade, Paresh H. Salame, Bharat Apparao Bhanvase, Vijay B. Pawade, Paresh H. Salame, Bharat Apparao Bhanvase im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Business & R&D. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
CRC Press
Jahr
2020
ISBN
9781000073201
Auflage
1
Thema
R&D

1

Synthesis, Properties, and Applications of Transition Metal Oxide Nanomaterials

R. Rakesh Kumar, K. Uday Kumar, and D. Haranath

CONTENTS
1.1 Introduction
1.2 Synthesis Methods of TMONMS
1.2.1 Zinc Oxide (ZnO) Nanomaterials
1.2.1.1 Zero-Dimensional ZnO Nanomaterials
1.2.1.2 One-Dimensional ZnO Nanomaterials
1.2.1.3 Two-Dimensional ZnO Nanomaterials
1.2.2 Titanium Dioxide (TiO2) Nanomaterials
1.2.2.1 Zero-Dimensional TiO2 Nanomaterials
1.2.2.2 One-Dimensional TiO2 Nanomaterials
1.2.2.3 Two-Dimensional TiO2 Nanomaterials
1.2.3 Nickel Oxide (NiO) Nanomaterials
1.2.3.1 Zero-Dimensional NiO Nanomaterials
1.2.3.2 One-Dimensional NiO Nanomaterials
1.2.3.3 Two-Dimensional NiO Nanomaterials
1.2.4 Tungsten Oxide (WOx) Nanomaterials
1.2.4.1 Zero-Dimensional WOx Nanomaterials
1.2.4.2 One-Dimensional WOx Nanomaterials
1.2.4.3 Two-Dimensional WOx Nanomaterials
1.2.5 Vanadium Pentoxide (V2O5) Nanomaterials
1.2.5.1 Zero-Dimensional V2O5 Nanomaterials
1.2.5.2 One-Dimensional V2O5 Nanomaterials
1.2.5.3 Two-Dimensional V2O5 Nanomaterials
1.2.6 Iron Oxide Fe2O3 Nanomaterials
1.2.6.1 Zero-Dimensional Fe2O3 Nanomaterials
1.2.6.2 One-Dimensional Fe2O3 Nanomaterials
1.2.6.3 Two-Dimensional Fe2O3 Nanomaterials
1.2.7 Tin Oxide SnO2 Nanomaterials
1.2.7.1 Zero-Dimensional SnO2 Nanomaterials
1.2.7.2 One-Dimensional SnO2 Nanomaterials
1.2.7.3 Two-Dimensional SnO2 Nanomaterials
1.3 Growth Mechanisms of TMO Nanomaterials
1.3.1 One-Dimensional Nanomaterial Growth Mechanisms
1.3.1.1 VLS Growth Mechanism
1.3.1.2 Self-Catalytic VLS Growth Mechanism
1.3.1.3 VS Growth Mechanism
1.3.2 Two-Dimensional Nanomaterial Growth Mechanisms
1.3.2.1 Screw Dislocation Growth Mechanism
1.3.2.2 Surfactant-Assisted Growth Mechanism
1.3.2.3 Oriented Attachment Growth Mechanism
1.3.3 Zero-Dimensional Nanomaterial Growth Mechanisms
1.3.3.1 Ostwald Ripening Growth Mechanism
1.3.3.2 Oriented Attachment Growth Mechanism
1.4 Applications of Transition Metal Oxide Nanomaterials
1.4.1 Electrochromics
1.4.2 Lithium Ion Battery
1.4.3 Supercapacitors
1.4.4 Photocatalysis
1.4.5 Energy-Harvesting Applications: Solar Cells and Nanogenerators
1.5 Conclusions
References

1.1 INTRODUCTION

Transition metal oxide nanomaterials (TMONMs) in the form of nanowires, nanoparticles (NPs), nanosheets, nanoflowers, nanoribbons, nanobelts, 3D networks, and hierarchical nanostructures have attracted a lot of attention from the last decade due to their multifunctional properties. The unusual electronic structure of the base transition metal and the bonding with oxide makes TMONMs a fascinating class of materials. The partially filled d orbital is the basis for a wide range of oxides with unique physical and chemical properties. This characteristic feature brings these materials with unique and exceptional reactive electronic transitions, high dielectric constants, high density, tunable band gap, and morphologies controlled on the nanodimension. Therefore, TMONMs are considered to be one of the fascinating functional materials due to tunable physical and chemical properties with a wide range of applications that include energy storage, energy harvesting, photocatalysis, sensors, electrochromic devices, wastewater treatment, and microelectronics.
A variety of synthesis methods have been employed for the synthesis of TMONMs both in the vapor phase and the solution phase at higher temperatures and lower temperatures, respectively. Vapor phase methods include thermal evaporation, electron beam evaporation, pulsed-laser deposition, and chemical vapor deposition. Morphology in vapor phase methods can be controlled by changing the parameters such as growth temperature, catalyst, substrate, pre- and post-treatment, and oxygen pressure. In the vapor phase method, morphologies such as wires, rods, needles, tubes, and belts will be obtained. The growth mechanism can be easily summarized by the vapor-solid and vapor-liquid-solid (VLS) mechanism. In the liquid-phase method, a greater variety of nanostructures can be synthesized than in the vapor-phase method. Hydrothermal growth, electrochemical deposition, and template-directed synthesis are more popular methods in the liquid phase. Morphology in the liquid-phase synthesis can be controlled by growth temperature, pressure, time, and reaction medium.
TMONMs of WO3, Fe2O3, ZnO, TiO2, V2O5, MnO, CoO, and SnO2 are currently playing a major role in various applications. TMONMs have been extensively investigated as electrode material for Li-ion batteries for high-energy density as well as a long life cycle. Hierarchically nanostructured transition metal oxides (TMOs) have become a hot research area in the field of batteries. Hierarchical nanostructures provide more accessible electroactive sites for redox reactions, shorten the diffusion length of Li-ion, and also accommodate a large volume expansion during cycling. TMONMs also play a major role in supercapacitor applications for high-energy storage and harvesting energy in the form of solar cells, nanogenerators. TMONMs of Fe2O3, Fe3O4, CoO, CO3O4, NiO, Mn2O3, TiO2, Nb2O5, V2O5, and WO3 are extensively studied for energy storage and conservation applications. Recently, synthesis of bimetallic TMO nanostructures such as NiCo2O4, MnCo2O4, ZnFe2O4, and ZnCo2O4 also tested for energy-storage applications.
Another useful application of TMONMs is photocatalytic activity. Single TMOs such as TiO2, Fe2O3, V2O5, ZnO, and TiO2 loaded with various transition metals (Co, Cr, Fe, Mo, V, and W) have shown excellent photocatalytic activity. Photocatalytic activity finds applications in the disinfection of both air and water. TMONM-coated surfaces were developed as self-disinfecting materials. Photocatalytic activity has potential application in environmental health, biological, medical, hospitals, food, and pharmaceutical applications.
The first part of this chapter discusses the different synthesis methods for TMONMs, and in the second part, different applications of TMONMs are presented.

1.2 SYNTHESIS METHODS OF TMONMS

1.2.1 ZINC OXIDE (ZnO) NANOMATERIALS

1.2.1.1 Zero-Dimensional ZnO Nanomaterials

Zero-dimensional (0D) nanostructures such as NPs, quantum dots, and hollow spheres of ZnO have attracted a lot of attention due to their potential applications in various fields [1,2,3,4]. Strong UV-absorption properties of ZnO are used in personal care products such as cosmetics and sunscreens. In addition to the above, ZnO NPs have superior antibacterial and antimicrobial properties, which makes them useful in the textile industry. ZnO hollow spheres are used in catalysis and chemical and biological sensors. Similarly, ZnO quantum dots are useful in drug delivery, optical imaging, cancer cell sensing, and DNA detection.
ZnO NPs were mainly prepared by the chemical pre...

Inhaltsverzeichnis