Deep Imaging in Tissue and Biomedical Materials
eBook - ePub

Deep Imaging in Tissue and Biomedical Materials

Using Linear and Nonlinear Optical Methods

Lingyan Shi, Robert R. Alfano, Lingyan Shi, Robert R. Alfano

Buch teilen
  1. 524 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Deep Imaging in Tissue and Biomedical Materials

Using Linear and Nonlinear Optical Methods

Lingyan Shi, Robert R. Alfano, Lingyan Shi, Robert R. Alfano

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

The use of light for probing and imaging biomedical media is promising for the development of safe, noninvasive, and inexpensive clinical imaging modalities with diagnostic ability. The advent of ultrafast lasers has enabled applications of nonlinear optical processes, which allow deeper imaging in biological tissues with higher spatial resolution. This book provides an overview of emerging novel optical imaging techniques, Gaussian beam optics, light scattering, nonlinear optics, and nonlinear optical tomography of tissues and cells. It consists of pioneering works that employ different linear and nonlinear optical imaging techniques for deep tissue imaging, including the new applications of single- and multiphoton excitation fluorescence, Raman scattering, resonance Raman spectroscopy, second harmonic generation, stimulated Raman scattering gain and loss, coherent anti-Stokes Raman spectroscopy, and near-infrared and mid-infrared supercontinuum spectroscopy. The book is a comprehensive reference of emerging deep tissue imaging techniques for researchers and students working in various disciplines.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Deep Imaging in Tissue and Biomedical Materials als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Deep Imaging in Tissue and Biomedical Materials von Lingyan Shi, Robert R. Alfano, Lingyan Shi, Robert R. Alfano im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Mathematik & Lineare & nichtlineare Programmierung. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Chapter 1

Overview of Second- and Third-Order Nonlinear Optical Processes for Deep Imaging

Sangeeta Murugkara and Robert W. Boydb
aDepartment of Physics, Carleton University,
Ottawa, Ontario K1S 5B6, Canada
bDepartment of Physics, University of Ottawa,
Ottawa, Ontario K1N 6N5, Canada

1.1 Introduction: Nonlinear Optical Contrast in Biological Imaging

The field of optical microscopic imaging has rapidly evolved because of tremendous advances made in laser and detection technology. Various types of linear and nonlinear light–matter interactions have been harnessed for providing contrast in the microscopic images. Simple microscopy techniques such as bright-field and differential-interference-contrast reveal structural information at the cellular level owing to the refractive index contrast of the sample medium. Fluorescence microscopy offers higher chemical specificity and is the most popular contrast mechanism used in biological studies. The contrast is achieved by means of targeted labeling of molecules using exogenous or endogenous fluorophores. However, external fluorophores are often perturbative since they may disrupt the native state of the sample, especially for small molecules whose size may be smaller than the fluorescent label itself. Besides, many molecular species are intrinsically nonfluorescent or only weakly fluorescent. It is also better to avoid external contrast agents for in vivo imaging applications since such contrast agents need concurrent development of appropriate delivery strategies and are often limited by problems of label specificity and induced toxicity. Vibrational microscopy techniques, on the other hand, are inherently label-free. They involve the excitation of molecular vibrations and offer intrinsic chemical specificity. Two such techniques include infrared absorption and Raman microscopy. Out of these, infrared microscopy has low spatial resolution owing to the long infrared wavelengths employed. In addition, water absorption of the infrared light is a major limitation for investigating live biological samples. Raman scattering, on the other hand, is based on the inelastic scattering of light by vibrating molecules and provides a molecular fingerprint of the chemical composition of a living cell or tissue. It offers a powerful label-free contrast mechanism and has been applied in various biological investigations. Linear contrast mechanisms based on fluorescence and Raman scattering typically employ continuous-wave visible light for excitation and sample scanning or laser scanning to generate an image. A confocal pinhole inserted at the detector facilitates a three-dimensionally sectioned image but unfortunately limits the sensitivity of detection.
In comparison, nonlinear optical microscopy or multiphoton microscopy employs near-infrared (near-IR) femtosecond or picosecond pulsed light to excite nonlinear optical processes that can only be accessed by application of two or more (multi) photons [1]. The nonlinear optical signal is generated only in the focal plane of the objective where the beam intensity is maximized. This results in the inherent three-dimensional sectioning capability without the need for a confocal pinhole. This also means that significantly greater sensitivity in signal detection is achieved since the confocal collection geometry is not necessary. The near-IR light used for excitation of the nonlinear optical signal enables deeper penetration in thick scattering samples and in addition is less biologically harmful. In addition, multiphoton microscopic imaging can take advantage of nonlinear optical processes involving endogenous contrast. This ability permits dynamic studies of live cells and tissue specimens in a label-free manner.
Two-photon-excited fluorescence (TPEF) or two-photon microscopy has been extensively applied for biological imaging over the past couple of decades [2, 3]. In TPEF, a single femtosecond pulsed laser beam is tightly focused in the specimen such that two low energy, near-IR photons are simultaneously absorbed by a fluorophore and then emitted as one photon at a higher frequency than the incident ligh...

Inhaltsverzeichnis