Photonics
eBook - ePub

Photonics

Principles and Practices

Abdul Al-Azzawi, Brian J. Thompson

Buch teilen
  1. 968 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Photonics

Principles and Practices

Abdul Al-Azzawi, Brian J. Thompson

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Since the invention of the laser, our fascination with the photon has led to one of the most dynamic and rapidly growing fields of technology. An explosion of new materials, devices, and applications makes it more important than ever to stay current with the latest advances. Surveying the field from fundamental concepts to state-of-the-art developments, Photonics: Principles and Practices builds a comprehensive understanding of the theoretical and practical aspects of photonics from the basics of light waves to fiber optics and lasers.

Providing self-contained coverage and using a consistent approach, the author leads you step-by-step through each topic. Each skillfully crafted chapter first explores the theoretical concepts of each topic and then demonstrates how these principles apply to real-world applications by guiding you through experimental cases illuminated with numerous illustrations. Coverage is divided into six broad sections, systematically working through light, optics, waves and diffraction, optical fibers, fiber optics testing, and laboratory safety. A complete glossary, useful appendices, and a thorough list of references round out the presentation. The text also includes a 16-page insert containing 28 full-color illustrations.

Containing several topics presented for the first time in book form, Photonics: Principles and Practices is simply the most modern, comprehensive, and hands-on text in the field.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Photonics als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Photonics von Abdul Al-Azzawi, Brian J. Thompson im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Naturwissenschaften & Optik & Licht. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
CRC Press
Jahr
2017
ISBN
9781351838177

Section IV

Optical Fibres

22
Fibre Optic Cables

images

22.1 INTRODUCTION

Fibre optic cables transmit data through very small cores at the speed of light. Significantly different from copper cables, fibre optic cables offer high bandwidths and low losses, which allow high data-transmission rates over long distances. Light propagates throughout the fibre cables according to the principle of total internal reflection.
There are three common types of fibre optic cables: single-mode, multimode, and graded-index. Each has its advantages and disadvantages. There also are several different designs of fibre optic cables, each made for different applications. In addition, new fibre optic cables with different core and cladding designs have been emerging; these are faster and can carry more modes. While fibre optic cables are used mostly in communication systems, they also have established medical, military, scanning, imaging, and sensing applications. They are also used in optical fibre devices and fibre optic lighting.
This chapter will discuss the fabrication processes used in manufacturing fibre cables. The processes produce a thin flexible glass strand with a diameter even smaller than that of human hair. The chapter will also detail methods of coupling a light source with a fibre cable in the manufacturing of optical fibre devices. It will also compare fibre and copper cables and describe the applications of fibre optic cables in many fields and sectors of modern society. Finally, this chapter will present four experimental cases, including fibre cable inspection and handling, fibre cable end preparation, numerical aperture measurements and calculations, and fibre cable power output intensity measurements and calculations.

22.2 THE EVOLUTION OF FIBRE OPTIC CABLES

The evolution of optical communication systems dates back to the early 1790s, when the French engineer Claude Chappe (1763–1805) invented the optical telegraph. His system involved a series of semaphores mounted on towers, where human operators relayed messages from one tower to the next. This was certainly an improvement over hand-delivered messages. But by the mid-nineteenth century, the optical telegraph was replaced by the electric telegraph, leaving behind a legacy of Telegraph Hills.
In 1841, Swiss physicist Daniel Colladen (1802–1893) and French physicist Jacques Babinet (1794–1872) showed in their popular science lectures that light could be guided along jets of water for fountain displays. Then in 1870, Irish physicist John Tyndall (1820–1893) demonstrated the light-pipe phenomenon at the Royal Society in England. Tyndall directed a beam of sunlight into a container of water and opened the spout. Water flowed out in a jet, and the pull of gravity bent the water into a parabolic shape, shown in Figure 22.1. Light was trapped inside the water jet by the total internal reflection phenomena. The light beam bounced off the top surface, then off the lower surface of the jet, until turbulence occurred in the flowing water and broke up the beam. This experiment marked the first research into the guided transmission of light by an interface between two optical materials.
In 1880, Alexander Graham Bell patented an optical telephone system that he called the Photophone, but his earlier invention—the telephone—proved far more practical. While Bell dreamed of sending signals through the air, the atmosphere did not transmit light as reliably as wires carried electricity. For the next several decades, though light was used for a few special applications such as signaling between ships, inventions using optical communication gathered dust on the shelf. Bell donated his Photophone to the Smithsonian Institution.
images
FIGURE 22.1 Total internal reflection of light in a water jet.
Ultimately, a new light-guiding technology that slowly took root solved the problem of optical transmission, The technology depended on the phenomenon of total internal reflection, which can confine light in an optical material that is surrounded by another optical material with a lower refractive index, such as glass in air. However, it was a long time before this method was adapted for communications.
Optical fibres went a step further. These are essentially transparent rods of glass or plastic stretched until they are long and flexible. During the 1920s, John Logie Baird in England and Clarence W. Hansell in the United States patented the idea of using arrays of hollow pipes or transparent rods to transmit images for television or facsimile systems. British Patent Spec 20,969/27 was registered to J. L. Baird, and US Patent 1,751,584 was granted to C. W. Hansell in 1930 for the scanning and transmission of a television image via fibres. Also in 1930, H. Lamm, in Germany, demonstrated light transmission through fibres. The next reported activity in this field took place in 1951, when A. C. S. van Heel in Holland and Harold H. Hopkins and Narinder S. Kapany of Imperial College in London investigated light transmission through bundles of fibres. While van Heel coated his fibres with plastic, Kapany explored fibre alignment, and as reported in his book Fibre Optics, produced the first undistorted image through an aligned bundle of uncoated glass fibres.
Neither van Heel nor Hopkins and Kapany made bundles that could carry light far, but their reports sparked the fibre optics revolution. The crucial innovation was made by van Heel, stimulated by a conversation with the American optical physicist Brian O’Brien. While all earlier fibres were bare, with total internal reflection at a glass–air interface, Heel covered a bare fibre of glass or plastic with a transparent cladding of lower refractive index. This protected the total reflection surface from losses and greatly reduced crosstalk between fibre cables. The next key step was the development of glass-clad fibres by Lawrence Curt...

Inhaltsverzeichnis