Discovering Group Theory
eBook - ePub

Discovering Group Theory

A Transition to Advanced Mathematics

Tony Barnard, Hugh Neill

Buch teilen
  1. 219 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Discovering Group Theory

A Transition to Advanced Mathematics

Tony Barnard, Hugh Neill

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Discovering Group Theory: A Transition to Advanced Mathematics presents the usual material that is found in a first course on groups and then does a bit more. The book is intended for students who find the kind of reasoning in abstract mathematics courses unfamiliar and need extra support in this transition to advanced mathematics.

The book gives a number of examples of groups and subgroups, including permutation groups, dihedral groups, and groups of integer residue classes. The book goes on to study cosets and finishes with the first isomorphism theorem.

Very little is assumed as background knowledge on the part of the reader. Some facility in algebraic manipulation is required, and a working knowledge of some of the properties of integers, such as knowing how to factorize integers into prime factors.

The book aims to help students with the transition from concrete to abstract mathematical thinking.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Discovering Group Theory als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Discovering Group Theory von Tony Barnard, Hugh Neill im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Mathematics & Algebra. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
CRC Press
Jahr
2016
ISBN
9781315405766
Auflage
1
Thema
Algebra

1

Proof

1.1 The Need for Proof

Proof is the essence of mathematics. It is a subject in which you build secure foundations, and from these foundations, by reasoning, deduction, and proof, you deduce other facts and results that you then know are true, not just for a few special cases, but always.
For example, suppose you notice that when you multiply three consecutive whole numbers such as 1 × 2 × 3 = 6, 2 × 3 × 4 = 24, and 20 × 21 × 22 = 9240, the result is always a multiple of 6. You may make a conjecture that the product of three consecutive whole numbers is always a multiple of 6, and you can check it for a large number of cases. However, you cannot assert correctly that the product of three consecutive whole numbers is always a multiple of 6 until you have provided a convincing argument that it is true no matter which three consecutive numbers you take.
For this example, a proof may consist of noting that if you have three consecutive whole numbers, one (at least) must be a multiple of 2 and one must be a multiple of 3, so the product is always a multiple of 6. This statement is now proved true whatever whole number you start with.
Arguing from particular cases does not constitute a proof. The only way that you can prove a statement by arguing from particular cases is by ensuring that you have examined every possible case. Clearly, when there are infinitely many possibilities, this cannot be done by examining each one in turn.
Similarly, young children will “prove” that the angles of a triangle add up to 180° by cutting the corners of a triangle and showing that if they are placed together as in Figure 1.1 they make a straight line, or they might measure the angles of a triangle and add them up. However, even allowing for inaccuracies of measuring, neither of these methods constitutes a proof; by their very nature, they cannot show that the angle sum of a triangle is 180° for all possible triangles.
So a proof must demonstrate that a statement is true in all cases. The onus is on the prover to demonstrate that the statement is true. The argument that “I cannot find any examples for which it doesn’t work, therefore it must be true” simply isn’t good enough.
Images
FIGURE 1.1
“Proof” that the angles of a triangle add to 180°.
Here are two examples of statements and proofs.
EXAMPLE 1.1.1
Prove that the sum of two consecutive whole numbers is odd.
Proof
Suppose that n is the smaller whole number. Then (n + 1) is the larger number, and their sum is n + (n + 1) = 2n + 1. Since this is one more than a multiple of 2, it is odd. ■
The symbol ■ is there to show that the proof is complete. Sometimes, in the absence of such a symbol, it may not be clear where a proof finishes and subsequent text takes over.
EXAMPLE 1.1.2
Prove that if a and b are even numbers, then a + b is even.
Proof
If a is even, then it can be written in the form a = 2m where m is a whole number. Similarly b = 2n where n is a whole number. Then a + b = 2m + 2n = 2(m + n). Since m and n are whole numbers, so is m + n; therefore a + b is an even number. ■
Notice in Example 1.1.2 that the statement says nothing about the result a + b when a and b are not both even. It simply makes no comment on any of the three cases: (1) a is even and b is odd; (2) a is odd and b is even; and (3) a and b are both odd.
In fact, a + b is even in case (3) but the statement of Example 1.1.2 says nothing about case (3).
The same is true of general statements made in everyday life. Suppose that the statement: “If it is raining then I shall wear my raincoat” is true. This statement says nothing about what I wear if it is not raining. I might wear my raincoat, especially if it is cold or it looks like rain, or I might not.
This shows an important point about statements and proof. If you are proving the truth of a statement such as “If P then Q,” where P and Q are statements such as “a and b are even” and “a + b is even,” you cannot deduce anything at all about the truth or falsity of Q if the statement P is not true.

1.2 Proving by Contradiction

Sometimes it can be difficult to see how to proceed with a direct proof of a statement, and ...

Inhaltsverzeichnis