Core Analysis
eBook - ePub

Core Analysis

A Best Practice Guide

Colin McPhee,Jules Reed,Izaskun Zubizarreta

Buch teilen
  1. 852 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Core Analysis

A Best Practice Guide

Colin McPhee,Jules Reed,Izaskun Zubizarreta

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Core Analysis: A Best Practice Guide is a practical guide to the design of core analysis programs. Written to address the need for an updated set of recommended practices covering special core analysis and geomechanics tests, the book also provides unique insights into data quality control diagnosis and data utilization in reservoir models.

The book's best practices and procedures benefit petrophysicists, geoscientists, reservoir engineers, and production engineers, who will find useful information on core data in reservoir static and dynamic models. It provides a solid understanding of the core analysis procedures and methods used by commercial laboratories, the details of lab data reporting required to create quality control tests, and the diagnostic plots and protocols that can be used to identify suspect or erroneous data.

  • Provides a practical overview of core analysis, from coring at the well site to laboratory data acquisition and interpretation
  • Defines current best practice in core analysis preparation and test procedures, and the diagnostic tools used to quality control core data
  • Provides essential information on design of core analysis programs and to judge the quality and reliability of core analysis data ultimately used in reservoir evaluation
  • Of specific interest to those working in core analysis, porosity, relative permeability, and geomechanics

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Core Analysis als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Core Analysis von Colin McPhee,Jules Reed,Izaskun Zubizarreta im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Technology & Engineering & Chemical & Biochemical Engineering. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Chapter 1

Best Practice in Coring and Core Analysis

Colin McPhee LR Senergy Ltd., UK
Jules Reed LR Senergy Ltd., UK
Izaskun Zubizarreta LR Senergy Ltd., UK

Abstract

Core analysis provides the only direct and quantitative measurement of “intact” oil and gas reservoir properties. It should provide the foundation of formation evaluation for building static and dynamic reservoir models. However, it is estimated that approximately 70% of core analysis data are unfit for purpose as a consequence of ill-conceived test programme design, lack of planning, poor laboratory practice, inadequate reporting standards and unrepresentative test samples or test conditions.
This chapter explains why a best practice guide to core analysis data acquisition is needed, and outlines a core analysis management framework to ensure effective quality control of test data and minimise data uncertainties. The objectives are to provide reservoir engineers, geoscientists and petrophysicists with a solid grounding in the acquisition, evaluation and implementation of reliable and representative routine core analysis and special core analysis data, and the essential knowledge to be able to judge the quality and reliability of core analysis data that are used in reservoir evaluation and characterisation.
Keywords
Formation evaluation
Core analysis
Quality control
Best practice

1.1 Core Analysis Data: The Foundation of Formation Evaluation

The primary goal of geologists and petrophysicists is to estimate the volume of hydrocarbons initially in place in a reservoir. The primary goal of the reservoir engineer is to understand the physics of the reservoir-fluid system so that the ultimate recovery of hydrocarbons is maximised in the most economic matter. Both require a detailed knowledge of the reservoir geometry, structure and the interaction between the reservoir and the fluids, either in place, or which may be introduced into the reservoir. In reservoir modelling, a computer model of the reservoir is constructed by geologists, petrophysicists and geophysicists to provide a description of the reservoir which is principally used to determine the volumes of hydrocarbon in place. This is normally referred to as a static model. Reservoir simulation models are constructed by reservoir engineers to describe and map the hydrocarbon recovery processes under different production mechanisms. These dynamic models are principally used to determine reserves and recovery factors and to predict hydrocarbon production profiles for economic analysis.
Both static and dynamic reservoir models draw on a variety of disparate data sources including regional geology, seismic, sedimentological modelling, drilling data, wireline and logging/measurement while drilling data, fluid pressures and rock and fluid property data. The nature and quality of the model input data change throughout the lifetime of a field, so it is important to constantly review data quality to minimise uncertainties and to include data quality assessment in reservoir modelling. The quantity and quality of data used for both static and dynamic reservoir modelling must always be fit for purpose and match the field development objectives.
Core is normally the only part of the (relatively) undisturbed reservoir formation we can actually see, touch and feel at the surface. Consequently, core analysis data should be the “ground truth”, or the foundation upon which integrated formation evaluation and reservoir characterisation rest. All other data sources are essentially remote, so reliable and representative core analysis data are essential to calibrate and validate other data.
For example, the volume of stock tank oil initially in place (OIIP) in a reservoir can be determined from
si1_e
(1.1)
Determination of the gross rock volume (GRV) and gross factor (G) in the net/gross ratio (N/G) is the primary responsibility of geophysicists and geologists. The reservoir engineer is responsible for oil formation volume factor (Bo) from pressure, volume temperature (PVT) experiments. The petrophysicist is responsible for net (N), porosity (ϕ) and water saturation (Sw) where data input relies principally on logs. Reservoir net thickness is normally defined by a permeability cut-off, and high-resolution permeability data are only possible from core. Porosity interpretation (e.g. from density logs) should be verified by, or calibrated against, stressed core porosities. Resistivity log interpretation requires core electrical property measurements to quantitatively determine water saturation in clean formations, and normalised cation exchange capacity is required to correct formation resistivity response for the presence of conductive clays. Water saturation can be determined directly by extracting water from core using Dean Stark or retort methods or indirectly, from primary drainage capillary pressure measurements.
The typical core analysis tests which are offered by commercial core analysis vendors and used as data input in petrophysical static models are summarised in Table 1.1. Historically these tests were carried out only at ambient conditions (low or no confining stress; ambient laboratory temperature), but most commercial laboratories can now provide these tests at more representative reservoir-appropriate stress, fluid and temperature conditions.
Table 1.1
Typical Core Analysis Data Input to Volumetric Calculations (Static Models)
ParameterData SourceTest Methods
NetPermeabilityAir permeability (ambient or reservoir stress)
Klinkenberg permeability (ambient or reservoir stress)
Brine (water) permeability (ambient or reservoir stress)
Probe permeability (ambient conditions)
PorosityDensity porosityHelium porosity (ambient or reservoir stress) Resaturation porosity (ambient or reservoir stress)
Water saturationElectrical parametersFormation resistivity factor (ambient or reservoir stress)
Resistivity index (ambient or reservoir-appropriate conditions)
Wet chemistry cation exchange capacity (CEC) for shaly sands (ambient conditions)
Multiple-salinity tests (normalised CEC) at ambient or reservoir stress
Primary drainage capillary pressureLow-pressure mercury injection (ambient or reservoir stress)
High-pressure mercury injection (ambient conditions)
Gas–water or oil–water porous plate (ambient or reservoir-appropriate conditions)
Gas–water or oil–water centrifuge (ambient conditions or limited reservoir stress)
Direct measurementRetort extraction (ambient conditions)
Dean-Stark extraction (ambient conditions)
As Dake (1991) points out, “determination of the recovery factor is the most important single task of the reservoir engineer”. Recovery factors may be determined on purely technical criteria, but, more probably, on economic or environmental terms. For example, hydrocarbon recovery efficiency in a waterflood in an oil reservoir is largely governed by the mobility ratio:
si2_e
(1.2)
where Mrw and Mro are the relative mobilities of water and oil, respectively. The parameters kro and kro are the relative permeabilities to oil and water, and μw and μo are water and oil viscosities, respectively. If ...

Inhaltsverzeichnis