Epigenetics of Aging and Longevity
eBook - ePub

Epigenetics of Aging and Longevity

Translational Epigenetics vol 4

Alexey Moskalev, Alexander Vaiserman, Alexey Moskalev, Alexander M. Vaiserman

Buch teilen
  1. 544 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Epigenetics of Aging and Longevity

Translational Epigenetics vol 4

Alexey Moskalev, Alexander Vaiserman, Alexey Moskalev, Alexander M. Vaiserman

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Epigenetics of Aging and Longevity provides an in-depth analysis of the epigenetic nature of aging and the role of epigenetic factors in mediating the link between early-life experiences and life-course health and aging. Chapters from leading international contributors explore the effect of adverse conditions in early-life that may result in disrupted epigenetic pathways, as well as the potential to correct these disrupted pathways via targeted therapeutic interventions. Intergenerational epigenetic inheritance, epigenetic drug discovery, and the role of epigenetic mechanisms in regulating specific age-associated illnesses—including cancer and cardiovascular, metabolic, and neurodegenerative diseases—are explored in detail.

This book will help researchers in genomic medicine, epigenetics, and biogerontology better understand the epigenetic determinants of aging and longevity, and ultimately aid in developing therapeutics to extend the human life-span and treat age-related disease.

  • Offers a comprehensive overview of the epigenetic nature of aging, as well as the impact of epigenetic factors on longevity and regulating age-related disease
  • Provides readers with clinical and epidemiological evidence for the role of epigenetic mechanisms in mediating the link between early-life experiences, life-course health and aging trajectory
  • Applies current knowledge of epigenetic regulatory pathways towards developing therapeutic interventions for age-related diseases and extending the human lifespan

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Epigenetics of Aging and Longevity als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Epigenetics of Aging and Longevity von Alexey Moskalev, Alexander Vaiserman, Alexey Moskalev, Alexander M. Vaiserman im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Medicine & Genetics in Medicine. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2017
ISBN
9780128110836
Section 1
Epigenetic Mechanisms in Aging
Chapter 1

Aging Epigenetics

Changes and Challenges

Duygu Ucar1, and Bérénice A. Benayoun2 1The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States 2University of Southern California, Los Angeles, CA, United States

Abstract

Aging is the largest risk factor for many diseases, and the aging population is one of the fastest growing in the Western world. Therefore it has become ever more important to improve our understanding of cellular and molecular mechanisms that underlie human aging to promote healthy aging. However, this is a daunting task since aging is a complex phenomenon that manifests itself differently in different cell types, individuals, and even species with strong links to genetic and environmental drivers. In recent years, epigenetic alterations including DNA methylation, posttranslation modifications of histone proteins, chromatin structure, DNA–protein interactions, and noncoding RNA, have been established as one of the most conserved hallmarks of aging. Here, we review recent work in understanding aging-associated epigenetic changes in mammalian cells and recent advances in technology that has the potential to drive this research further—potentially to the bedside to slow down or reverse the hallmarks of aging.

Keywords

Aging; Chromatin; Epigenetics; Epigenomics; Senescence

1. Introduction

Aging corresponds to the breakdown of cellular and tissue function over time, which is associated with increased prevalence of chronic diseases (e.g., neurodegenerative and metabolic disorders, cancer), ultimately leading to death. Evidence in invertebrate model organisms and human studies support the idea that aging is regulated at the genetic level but also by nongenetic factors [1,2]. Interestingly, even the lifespan of isogenic individuals reveals large differences between the first and last death in controlled environments [3], suggesting that even small environment variations may dramatically impact aging and lifespan. A number of environmental modulators of the aging process include dietary interventions [4], upregulated stress response [5], physical exercise [6], and circadian rhythms [7].
The strictest definition of ‘epigenetics’ only covers phenotypic changes that are heritable through generations without underlying changes to the genetic material [8]. However, in the broader definition, which will be used hereafter, ‘epigenetics’ encompasses alterations at the level of chromatin that may play a significant role in regulating gene expression. In eukaryotic cells, chromatin corresponds to a nucleoproteic structural polymer, whose basic units are nucleosomes. Nucleosomes are composed of ∼150 bp DNA fragments wrapped around octamers of histone proteins, each unit containing two H2A, H2B, H3, and H4 histone proteins, which can be replaced by functional histone variants at specific loci (e.g., H2A.Z, H3.3, CENP-A) [9]. Chromatin can be found in two main states: euchromatin, a loose compartment permissive to transcription, and heterochromatin, a compact compartment that contains repressed regions of the genome. According to the ‘histone code’ hypothesis, combinations of histone posttranslational modifications are thought to modulate the accessibility and expression of underlying genes [10]. DNA methylation constitutes another layer of epigenetic regulation, the most well-studied type of which occurs in ‘CpG’ dinucleotides [11]. A final key layer of epigenetic regulation is attained through modulation of nucleosome positioning by ATP-dependent chromatin remodelers (e.g., SWI/SNF), which impacts regulatory sequence accessibility and higher-order chromatin compaction [12]. Several classes of noncoding RNAs (i.e., miRNAs, circRNAs, and lncRNAs) have been found to be able to modify transcriptional regulation and sometimes impact the chromatin landscape [1315].
Epigenetic alterations are considered one of the hallmarks (pillars) of the aging process [16,17], a role supported by many changes to chromatin marks throughout life and by the impact of interference with chromatin regulatory complexes on the lifespan of model organisms [1820,209]. Interestingly, accumulating evidence suggests that age-related epigenomic changes may interact with other hallmarks of aging, such as genome instability or loss of protein homeostasis [19]. Emerging evidence suggests that specific species of these ncRNA may become misregulated with aging [2225] and may even partially drive aging or age-related diseases phenotypes [22,25,26]. In this review, we will focus on the potential impact and changes in DNA and histone modifications throughout aging.
To this date, most of the knowledge of chromatin regulation remodeling with age has relied on global assessment of changes. Only a few studies have attempted to interrogate genome-wide locus-specific epigenomic changes with aging, with the exception of DNA methylation studies. Understanding the global and locus-specific epigenomic changes that accumulate during aging, identifying corresponding molecular regulators of health and lifespan, will be crucial to eventually increase healthy youthful years of life, and potentially reverse some aspects of aging.

2. Epigenetic Alterations and the Aging Process

2.1. The ‘Aging Epigenome’

The pervasiveness of age-related alterations in chromatin regulation across cell types and species is now well documented (recently reviewed in Refs. [1821]). These epigenomic alterations are t...

Inhaltsverzeichnis