Carbon Capture and Storage
eBook - ePub

Carbon Capture and Storage

Steve A. Rackley

Buch teilen
  1. 408 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Carbon Capture and Storage

Steve A. Rackley

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Carbon dioxide capture and storage (CCS) is a technology aimed at reducing greenhouse gas emissions from burning fossil fuels during industrial and energy-related processes. CCS involves the capture, transport and long-term storage of carbon dioxide, usually in geological reservoirs deep underground that would otherwise be released to the atmosphere. Carbon dioxide capture and storage offers important possibilities for making further use of fossil fuels more compatible with climate change mitigation policies. The largest volumes of CO2 could be captured from large point sources such as from power generation, which alone accounts for about 40 per cent of total anthropogenic CO2 emissions. The development of capture technologies in the power generation sector could be particularly important in view of the projected increase in demand for electricity in fast developing countries with enormous coal reserves (IEA 2002a). Although, this prospect is promising, more research is needed to overcome several hurdles such as important costs of capture technology and the match of large capture sources with adequate geological storage sites. The book will provide a comprehensive, detailed but non-specialist overview of the wide range of technologies involved in carbon dioxide capture and sequestration.

  • Focuses on technology rather than regulation and cost
  • Covers both traditional and cutting edge capture technology
  • Contains an abundance of case-studies an worked out examples
  • Insight into CSS technical processes

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Carbon Capture and Storage als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Carbon Capture and Storage von Steve A. Rackley im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Tecnologia e ingegneria & Gestione ambientale. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Chapter 1. Introduction
The fossil fuel resources of our planet—estimated at between 4000 and 6000 gigatonnes of carbon (Gt-C)—are the product of biological and geologic processes that have occurred over hundreds of million of years and continue today. The carbon sequestered in these resources over geological time was originally a constituent of the atmosphere of a younger earth—an atmosphere that contained ∼1500 parts per million (ppm) CO2 at the beginning of the Carboniferous age, 360 million years ago, when the evolution of earth’s first primitive forests began the slow process of biogeological sequestration.
Since the dawn of the industrial age, circa 1750, and particularly since the invention of the internal combustion engine, ∼5% of these resource volumes have been combusted and an estimated 280Gt-C released back into the atmosphere in the form of CO2. In the same period a further ∼150Gt-C has been released to the atmosphere from soil carbon pools as a result of changes in land use. The atmospheric, terrestrial, and oceanic carbon cycles have dispersed the greater part of these anthropogenic emissions, locking the CO2 away by dissolution in the oceans and in long-lived carbon pools in soils. During the period since 1750, the CO2 concentration in the atmosphere has increased from 280ppm to 368ppm in 2000, and ∼388ppm in 2010, the highest level in the past 650,000 years and one that is not likely to have been exceeded in the past 20 million years, where “likely” reflects the Intergovernmental Panel on Climate Change (IPCC) judgment of a 66–90% chance.
This increase in atmospheric CO2 concentration ([CO2]) influences the balance of incoming and outgoing energy in the earth-atmosphere system, CO2 being the most significant anthropogenic greenhouse gas (GHG). In its Fourth Assessment Report (AR4), published in 2007, the IPCC concluded that global average surface temperatures had increased by 0.74 ± 0.18°C over the 20th century (Figure 1.1), and that “most of the observed increase in global average temperatures since the mid-20th century is very likely (>90% probability) due to the observed increase in anthropogenic GHG concentrations.”
B9781856176361000018/gr1.webp is missing
Figure 1.1
Variation of the earth’s surface temperature during the 20th century (IPCC data)
Although anthropogenic CO2 emissions are relatively small compared to the natural carbon fluxes—for example, photosynthetic and soil respiration fluxes, at ∼60Gt-C per year, are 10 times greater than current emissions from fossil fuel combustion—these anthropogenic releases have occurred on a time scale of hundreds rather than hundreds of millions of years. Anthropogenic change has also reduced the effectiveness of certain climate feedback mechanisms; for example, changes in land-use and land-management practices have reduced the ability of soils to build soil carbon inventory in response to higher atmospheric CO2, while ocean acidification has reduced the capacity of the oceans to take up additional CO2 from the atmosphere.
The energy consumption of modern economies continues to grow, with some scenarios predicting a doubling of global energy demand between 2010 and 2050. Fossil fuels currently satisfy 85% of global energy demand and fuel a similar proportion of global electricity generation, and their predominance in the global energy mix will continue well into the 21st century, perhaps much longer. In the absence of mitigation, the resulting emissions will lead to further increase in atmospheric [CO2], causing further warming and inducing many changes in global climate. Even if [CO2] is stabilized before 2100, the warming and other climate effects are expected to continue for centuries, due to the long time scales associated with climate processes. Climate predictions for a variety of stabilization scenarios suggest warming over a multicentury time scale in the range of 2°C to 9°C, with more recent results favoring the upper half of this range.
Although many uncertainties remain, there is little room for serious doubt that measures to reduce CO2 emissions are urgently required to minimize long-term climate change. While research and development efforts into low- or zero-carbon alternatives to the use of fossil fuels continues, the urgent need to move toward stabilization of [CO2] means that measures such as the capture and storage of carbon that would otherwise be emitted can play an important role during the period of transition to low-carbon alternatives.
Within the field of carbon capture and storage (CCS), a diverse range of technologies is currently under research and development and a growing number of demonstration projects have been started or are planned. A few technologies have already reached the deployment stage, where local conditions or project specifics have ...

Inhaltsverzeichnis