Del mundo cuántico al universo en expansión
eBook - ePub

Del mundo cuántico al universo en expansión

Shahen Hacyan

Buch teilen
  1. 108 Seiten
  2. Spanish
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Del mundo cuántico al universo en expansión

Shahen Hacyan

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

La aparición de dos teorías de la física moderna: la mecánica cuántica y la relatividad, cambiaron radicalmente las ideas que se tenían sobre la materia y la energía, la fuerza, el tiempo y el espacio. Otro cambio radical se produjo con el descubrimiento de la expansión del Universo. Esta obra reseña la relación entre lo atómico y lo cósmico, entre las propiedades de la materia y la cosmología moderna.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Del mundo cuántico al universo en expansión als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Del mundo cuántico al universo en expansión von Shahen Hacyan im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Sciences physiques & Théorie des quanta. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

III. El modelo estándar

ONDA, PARTÍCULA, CAMPO

VIMOS en el capítulo I que las partículas del mundo cuántico se comportan a veces como ondas, y las ondas a veces como partículas. En realidad, los conceptos de onda y partícula, tal como los conocemos en nuestra experiencia diaria, no son muy apropiados para describir las partículas elementales. La situación recuerda la historia de los ciegos que fueron puestos en presencia de un elefante y se les pidió que lo describieran; un ciego palpó una pierna del elefante y afirmó que el animal se asemeja al tronco de un árbol, otro agarró su cola y lo describió como una serpiente, para un tercero que tocó su panza el paquidermo semejaba una pared, etcétera.
Quizás si tuviéramos un sexto sentido veríamos a las partículas elementales no como ondas o partículas, sino como algo más complejo. Quizás, también, ese sexto sentido lo poseamos realmente como una manera de compresión que se expresa en el lenguaje de las matemáticas. Pero estas especulaciones filosóficas nos alejan demasiado de los propósitos de este libro, por lo que las dejaremos hasta aquí.
Volviendo, pues, a las partículas elementales, el asunto se complica aún más si tomamos en cuenta el concepto de campo, tal como lo introdujimos al abordar el electromagnetismo. ¿Cómo se comporta el campo a nivel cuántico? Pensemos por un momento en el campo como una sustancia que permea el espacio, como sería, por ejemplo, un fluido o un gas; esta sustancia puede vibrar, y las vibraciones son ondas. En el caso del electromagnetismo, la luz es una onda del campo electromagnético, al igual que el sonido es una onda en el aire. Pero recordemos que, en el mundo cuántico, una onda también es una partícula. Por lo tanto, las vibraciones del campo también son partículas.
Podemos presentar ahora una imagen coherente del mundo cuántico. El elemento fundamental es el campo. El campo vibra y sus vibraciones, a nivel cuántico, son a la vez ondas y partículas. Las partículas asociadas al campo electromagnético son los fotones, las partículas de la luz. Existen otros tipos de campos y sus vibraciones: otras partículas elementales como los electrones, los protones y muchos otros. Tendremos la oportunidad de conocerlos en las páginas siguientes.
Por ahora señalemos que existen esencialmente dos tipos de partículas en la naturaleza: las partículas asociadas a la materia y las partículas asociadas a las interacciones. Las primeras se llaman fermiones y las segundas bosones, en honor a Enrico Fermi y Satyendranath Bose respectivamente, físicos que describieron por primera vez las propiedades básicas de estas dos grandes familias del mundo cuántico.
La diferencia básica entre fermiones y bosones tiene que ver con una importante propiedad de las partículas elementales que se llama espín, palabra que proviene del inglés spin, girar. Esta propiedad es análoga,en lo cuántico, a la rotación de los cuerpos sólidos sobre sí mismos. Un principio básico de la mecánica newtoniana es que esa rotación perdura indefinidamente mientras no se aplique alguna influencia externa. Sabemos, por ejemplo, que la Tierra ha girado sobre sí misma, dando una vuelta en un día, prácticamente desde que se formó hace unos 5 000 000 000 de años. En un ámbito más reducido, un trompo gira por largo rato, y cuando finalmente se detiene es por la fricción de su punta con el suelo. En mecánica la cantidad de rotación se mide con el llamado momento angular, que es esencialmente la masa de un cuerpo, multiplicada por su velocidad de rotación, y vuelto a multiplicar por su radio. Lo curioso es que las partículas elementales también poseen una propiedad equivalente al momento angular, el espín, que es absolutamente invariante. Además, el espín de una partícula elemental está cuantizado en unidades de la constante de Planck [13] dividida por 2π —es común definir (léase hache barra) como /2π. Lo anterior quiere decir que hay partículas con espín 0, , 2 etcétera: que son los bosones, partículas asociadas a las interacciones. Por otra parte, también hay partículas con espín 1/2, 2/3, etcétera, como los fermiones, partículas asociadas a la materia. El electrón, el neutrino, el protón y el neutrón tienen espín 1/2 y son, por lo tanto, fermiones; el fotón tiene espín y es un bosón.
Si bien el espín es el análogo cuántico del momento angular, la analogía no debe tomarse muy literalmente, ya que las partículas elementales no son objetos sólidos que giren. El espín es una propiedad intrínseca muy particular del mundo cuántico que se manifiesta sólo indirectamente. Veremos ahora con más detalle cuáles son los fermiones y los bosones fundamentales.

CUARKS Y LEPTONES

En un principio, parecía que los ladrillos fundamentales de la materia eran los electrones, protones y neutrones, pero las cosas empezaron a complicarse en los años cincuenta cuando se descubrieron partículas “exóticas” que no concordaban con ningún esquema teórico. Cada año se encontraban nuevas partículas supuestamente elementales y su número aumentaba sin límite. Los físicos las bautizaban generalmente con los nombres de las letras griegas, y así aparecieron las partículas mu, pi, omega, lambda, delta, ksi, tau, eta, etc. Pero parecía que el alfabeto griego sería insuficiente.[14]
En los grandes aceleradores de partículas, electrones y protones chocan unos con otros y se transforman en esas partículas exóticas que, durante sus muy breves vidas, dejan rastros en las cámaras de niebla. Estas cámaras consisten en recipientes llenos de algún gas que se ioniza fácilmente cuando pasa una partícula cargada eléctricamente; cuando eso sucede se observa una trayectoria luminosa (Figura 6). El estudio de esa trayectoria, captada en una placa fotográfica, permite deducir varias propiedades de las partículas, como su velocidad, masa, tiempo de vida, etcétera.
Figura 6. Trayectoria de partículas elementales en una cámara de niebla.
Salvo el electrón y el protón, todas las partículas de la materia son inestables. El neutrón aislado alcanza a vivir, en promedio, unos 15 minutos, al cabo de los cuales se transforma en un protón, un electrón y un antineutrino (proceso llamado decaimiento beta). Pero las otras partículas tienen vidas medias extremadamente breves, que se miden en millonésimas de segundos.
Con el fin de poner orden en el zoológico de las partículas elementales, Murray Gell-Mann y George Zweig propusieron en 1965 que todas las partículas que interactúan fuertemente entre sí están formadas, a su vez, de unas partículas aún más fundamentales, que Gell-Mann llamó cuarks[15], cuyas cargas eléctricas son ¡uno o dos tercios de la carga de un electrón! Una propuesta muy aventurada en su época, pues jamás se había detectado nada parecido a tales partículas.
Una característica común a todas las partículas es que sus cargas eléctricas son siempre múltiplos enteros (positivo o negativo) de una carga elemental: la carga de un electrón o de un protón. Ya vimos que esa carga elemental, que vamos a llamar e, equivale a unos 1.602 × 10−19 coulombs. La mayoría de las partículas tienen carga e (positivo), −e (negativo), o no tienen carga, aunque algunas partículas exóticas de muy corta vida poseen cargas de 2e o de −2e. Pero lo que definitivamente no se ha había descubierto nunca es una partícula cuya carga fuese una fracción de e como, por ejemplo, un tercio.
El hecho de que los protones y neutrones no sean partículas tan elementales, sino que estén hechos de otras más pequeñas, quedó establecido entre 1967 y 1973 gracias a una serie de experimentos realizados con el acelerador de partículas de tres kilómetros de largo de Standford, California. El procedimiento consiste en lanzar electrones con energías enormes contra protones y estudiar el resultado de las colisiones. Esto es semejante a disparar un rifle contra una caja cerrada para determinar qué contiene; si el contenido de la caja es homogéneo y blando las balas siguen su trayec...

Inhaltsverzeichnis