Física cuántica para filo-sofos
eBook - ePub

Física cuántica para filo-sofos

Alberto Clemente de la Torre

Buch teilen
  1. 129 Seiten
  2. Spanish
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Física cuántica para filo-sofos

Alberto Clemente de la Torre

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

En un estilo claro, despojado de términos técnicos, Alberto Clemente de la Torre traza un recorrido por los principales temas de la física cuántica destinados a los filo-sofos, es decir, a todos aquellos que quieren descubrir uno de los temas más sugerentes de la ciencia contemporánea, sin requerir para ello conocimientos previos.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Física cuántica para filo-sofos als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Física cuántica para filo-sofos von Alberto Clemente de la Torre im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Scienze fisiche & Teoria quantistica. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

V. La esencia de la teoría cuántica

En este capítulo veremos algunos de los elementos esenciales de la teoría cuántica, para lo cual (ya se lo habíamos anticipado) será necesario apelar a la disposición del lector a aceptar algunos conceptos que resultan hirientes a su intuición clásica. Los argumentos presentados en la clasificación de los sistemas físicos según sus escalas de velocidad y acción, y la ubicación del ser humano en la misma, han de ser preparación suficiente. El carácter contrario a la intuición de ciertos conceptos hace difícil asignarles un significado, vale decir, interpretarlos. Peor aún, para algunos elementos del formalismo existen varias interpretaciones contradictorias, según sea la postura filosófica adoptada. Dejaremos para un capítulo posterior la discusión detallada de estas interpretaciones, presentando aquí los conceptos sin insistir demasiado, por el momento, en asignarles significado.
El concepto de “Estado” juega un papel importante en el formalismo de toda teoría física. En la aplicación práctica de las teorías físicas, cualquiera sea el sistema que se estudie, se plantea a menudo el problema de predecir el valor que se le asignará a algún observable del sistema cuando conocemos algunas de sus propiedades o, en otras palabras, cuando conocemos el estado del sistema. En el formalismo, el estado del sistema está representado por un elemento matemático que, en algunos casos, es una ecuación, en otros, un conjunto de números o un conjunto de funciones. El formalismo contiene, además, recetas matemáticas bien definidas para, a partir del estado, poder calcular el valor asignado a cualquier observable. Esto es, conociendo e1 estado se puede responder cualquier pregunta relevante sobre el sistema. Los sistemas físicos, en general, evolucionan con el tiempo, van cambiando de estado. La teoría debe, entonces, permitir calcular el estado en cualquier instante, cuando aquél es conocido en un instante inicial. Las ecuaciones matemáticas que posibilitan dicho cálculo son las llamadas “ecuaciones de movimiento”. Para el sistema clásico formado por una partícula que se mueve en el espacio, el estado está determinado en cada instante por la posición y velocidad (o mejor, el impulso) de la misma. Las ecuaciones de Newton nos permiten, si conocemos las fuerzas aplicadas, calcular la posición y velocidad para cualquier instante posterior. A partir de este ejemplo podemos generalizar estableciendo que, en un sistema clásico, el estado está determinado por el valor que toman las coordenadas generalizadas y los impulsos canónicos correspondientes en el instante en cuestión. Recordando que hemos definido las propiedades del sistema por la asignación de valores a los observables, concluimos que el estado de un sistema clásico está fijado por el conjunto de propiedades que contiene todas las coordenadas e impulsos.
Todos los observables de un sistema clásico se pueden expresar como funciones de las coordenadas y de los impulsos: A(Qk, Pk). Por lo tanto, conociendo el estado, o sea conociendo el valor de las coordenadas e impulsos (Qk = q y Pk = p), podemos calcular el valor de dichas funciones, lo que resulta en un conocimiento del valor que toman todos los observables del sistema clásico (A = a para cualquier observable A). ¿Es posible fijar el estado de un sistema cuántico de la misma manera? Veremos que no, pues el principio de incerteza, que presentaremos más adelante, nos prohíbe hacerlo. El estado cuántico está determinado por un conjunto de propiedades, pero el mismo no puede incluir propiedades asociadas a todas las coordenadas e impulsos. Si contiene una coordenada, por ejemplo X = 5, no puede contener el impulso asociado a la misma. P = 8. ¿Cómo es posible, entonces, si el estado cuántico no contiene todas las coordenadas e impulsos, hacer predicciones para los observables que no incluye? Justamente, el mismo motivo que nos impide unir todos los observables en el estado, el principio de incerteza, es producido por cierta dependencia entre dichos observables que los relaciona y permite hacer las predicciones. Las coordenadas e impulsos de un sistema cuántico, en contraste con el sistema clásico, no son totalmente independientes, sino que están relacionadas de manera tal que el conocimiento de algunas propiedades permite hacer predicciones para el resto. A su vez, las predicciones no son precisas o exactas, como sucede con la física clásica, sino que son probabilísticas o estadísticas. Esta extraña estructura de la teoría cuántica será aclarada más adelante. Por el momento resumamos:
El estado de un sistema clásico está fijado por propiedades relacionadas con todas las coordenadas generalizadas y sus impulsos correspondientes. Con estas propiedades se puede calcular el valor asignado a cualquier observable. El estado cuántico está fijado por algunas propiedades solamente y las predicciones son probabilísticas.
Para la mecánica cuántica, el conjunto de propiedades que participan en la determinación del estado no es arbitrario, ya que el principio de incerteza excluye ciertas propiedades cuando algunas otras han sido incluidas. Si hacemos un experimento en un sistema cuántico para observar alguno de sus observables A, y el mismo resulta en el valor a, entonces el estado del sistema estará caracterizado por la propiedad A = a. Por ejemplo, si medimos la posición de una partícula con el resultado X = 5 m, esta propiedad fija el estado del sistema. Sin embargo, la determinación del estado por medio de un experimento es válida para instantes inmediatamente posteriores al mismo, pero no nos brinda ninguna información sobre el estado del sistema antes y durante el experimento. En efecto, todo experimento implica una interacción entre el sistema que se está observando y ciertos aparatos de medida apropiados. Durante dicha interacción hay intercambio de energía entre el sistema y el aparato. Por más pequeño que sea el intercambio, el proceso de medición implica una acción que, según aquella ley fundamental de la naturaleza, no puede ser menor que
, la constante de Planck. Ahora bien, recordemos el diagrama velocidad-inacción, que nos indica que los sistemas cuánticos están caracterizados por valores de acción cercanos a
. Quiere decir que la perturbación producida por la medición es tan grande como el sistema mismo. Por lo tanto, cualquier medición en un sistema cuántico lo perturbará de tal manera que se borrará toda posible información sobre su estado antes de la medición.
No es exclusividad de la mecánica cuántica que la observación altere al objeto observado; bien lo sabe el biólogo, quien para observar una célula lo primero que hace es matarla. Lo particular de la mecánica cuántica consiste en que los cambios que dicha perturbación puede producir son tan violentos que al final de la observación no hay forma de saber cuál era el estado del sistema cuando la misma comenzó. Resaltemos esto.
La observación experimental de una propiedad deja al sistema cuántico en el estado correspondiente a la misma, pero nada dice sobre el estado del sistema antes de la observación.
La imposibilidad de saber con certeza experimental cuál era el estado de un sistema antes de una observación adquiere particular importancia en el debate filosófico realismo versus positivismo ya que, según este último, hablar de las propiedades del sistema o del estado del mismo antes de una observación sería una frase sin sentido. Un experimento que determine que la posición de una partícula está caracterizada por la propiedad X = 5 m no nos autoriza a afirmar que antes de la observación la posición era de 5 m. Podemos decir, sí, que esa es la posición inmediatamente después del experimento, pero nada sabemos, ni podemos saber, sobre su situación anterior. Por lo tanto, para el positivista, toda afirmación acerca de la posición de la partícula antes del experimento carece de sentido, mientras que para el realista es perfectamente legal hablar de la posición o de la ubicación de la partícula, aunque no se le pueda asignar un valor determinado. Las dos posturas son irreconciliables. Para el positivista, la experimentación genera la propiedad que resulta en el experimento y no es la constatación de una cualidad preexistente en el sistema, mientras que, para el realista, la experimentación pone en evidencia alguna característica del sistema, preexistente, aunque sea imposible asignarle un valor numérico preciso. Continuará.
Se ha mencionado ya que entre las propiedades que definen el estado de un sistema cuántico no pueden aparecer, simultáneamente, posición e impulso. Teniendo en cuenta que el estado es el resultado de una observación experimental, se concluye que no debe poder existir ningún experimento que mida al mismo tiempo la posición y el impulso de una partícula. Esto mueve al asombro y merece una discusión más detallada. Primero debemos corregir: la mecánica cuántica no impide la medición simultánea de la posición y el impulso. Lo que no debe ser posible es que dichas mediciones puedan hacerse con infinita precisión, ya que las propiedades X = 5 y P = 8 implican un conocimiento exacto, sin error, de ambas. La mecánica clásica no impone tales restricciones, por lo cual dicho experimento clásico sí debe ser posible. Analizaremos un experimento del tipo e intentaremos llevarlo al mundo cuántico.
Consideremos el sistema físico clásico compuesto por un ciclista (que puede, o no, ser un físico, clásico o cuántico) que se mueve en su “todo terreno” a lo largo de una calle. Para medir experimentalmente la posición del ciclista o su velocidad, podemos utilizar una técnica fotográfica que consiste en: 1) elegir un tiempo muy corto de apertura del obturador a fin de medir la posición con mucha precisión, o 2) poner un tiempo largo para medir la velocidad. Si el tiempo de exposición es muy corto, 1/1000 segundo, la foto obtenida será muy nítida, lo que permite determinar con precisión la posición del ciclista durante la foto, como vemos en la figura 3, pero la velocidad quedará indeterminada. Si, por el contrario, elegimos un tiempo de apertura largo, 1 segundo, la foto no será nítida, quedando la posición mal definida, pero nos permite calcular la velocidad dividiendo el corrimiento por el tiempo de exposición. Si contamos con un aparato fotográfico, entonces tendríamos que optar por medir precisamente la posición, dejando la velocidad incierta, o bien medir la velocidad con alta precisión a costas de la imprecisión en la posición. Nos encontramos ante algo parecido al principio de incerteza, pero que nada tiene que ver con la mecánica cuántica, ya que esta limitación se debería al bajo presupuesto de investigación que nos aqueja actualmente. En un país que reconociera la importancia de la investigación dispondríamos de dos aparatos fotográficos: uno para determinar la posición y otro para determinar la velocidad, con lo cual el estado clásico quedaría perfectamente fijado: X = 5 m, V = 1 m/s. Notemos, sin embargo, que para esta determinación simultánea de la posición y de la velocidad hemos hecho la suposición, válida en el ejemplo clásico, de que la toma de la fotografía para fijar la posición no modifica la velocidad del ciclista y de que, al fotografiarlo para determinar la velocidad, no cambiamos su posición. Según lo visto anteriormente, estas suposiciones no son válidas en el sistema cuántico. En efecto, si en vez de un ciclista tenemos un electrón, las “fotos” se obtendrían con fotones de alta energía para conocer la posición, y de baja energía para la velocidad. Pero estos fotones modifican brutalmente el estado del electrón. Aquí sí estamos frente al principio de incerteza que en forma ineludible nos impide determinar con precisión arbitraria la posición e impulso de una partícula cuántica. En una parte importante del debate entre Bohr y Einstein, éste intentó, sin éxito, demostrar la posibilidad de medir experimentalmente posición e impulso con exactitud y en forma simultánea. Más adelante volveremos a considerar este debate.
Figura 3.webp
Figura 3. Determinación precisa de la posición y la velocidad de un ciclista.
La casi totalidad de las características esenciales de la física cuántica se pueden resumir en dos propiedades atribuidas a los sistemas cuánticos, ambas asombrosas para nuestra intuición clásica. La primera es que el valor que se les puede asignar a los observables no siempre es un número preciso; la segunda está relacionada con la independencia, o mejor dicho, dependencia entre los observables.
Analicemos la primera. Consideremos la propiedad X = 5 m correspondiente al observable de posición. En la física clásica, las propiedades de un mismo observable se excluyen mutuamente. Quiere decir que si una partícula clásica tiene la propiedad X = 5 m, entonces, con certeza, la partícula no tiene X = 6 m. Si está en un lugar, seguramente no está en otro lugar. Para ser más formales digamos que X = 5 m es una Propiedad Objetiva Poseída (POP) en el s...

Inhaltsverzeichnis