Space Physics and Aeronomy, Upper Atmosphere Dynamics and Energetics
eBook - ePub

Space Physics and Aeronomy, Upper Atmosphere Dynamics and Energetics

Wenbin Wang, Yongliang Zhang, Wenbin Wang

Buch teilen
  1. English
  2. ePUB (handyfreundlich)
  3. Über iOS und Android verfügbar
eBook - ePub

Space Physics and Aeronomy, Upper Atmosphere Dynamics and Energetics

Wenbin Wang, Yongliang Zhang, Wenbin Wang

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

A comprehensive overview of the structure and variability of the upper atmosphere

Earth's upper atmosphere is an open system that is strongly influencedby energy and momentum inputs from both above and below. New observation and modeing techniques have provided insights into dynamics, energetics, and chemical processes in the upper atmosphere.

Upper Atmosphere Dynamics and Energetics presents an overview of keyresearch advances in upper atmospheric physics, and measurement and modeling techniques, along with remaining challenges for understanding the state and variability of the upper atmospheric system.

Volume highlights include:

  • Insights into the interconnections between different areas of upper atmospheric science
  • Appreciation of the dynamics and complexity of the global upper atmospheric system
  • Techniques for observing and measuring the upper atmosphere
  • Responses of the upper atmosphere to external drivers

The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Space Physics and Aeronomy, Upper Atmosphere Dynamics and Energetics als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Space Physics and Aeronomy, Upper Atmosphere Dynamics and Energetics von Wenbin Wang, Yongliang Zhang, Wenbin Wang im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Sciences physiques & Énergie. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2021
ISBN
9781119815556

Part I
Energetics and Dynamics of the Upper Atmosphere

1
Joule Heating in the Thermosphere

Arthur D. Richmond
High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado, USA

ABSTRACT

High‐latitude Joule heating is an important energy source for thermospheric dynamics and composition. It is influenced by winds, plasma turbulence, variable electric fields, and conductivity modifications by strong electric fields. The height‐integrated heating can be estimated from the Poynting flux above the ionosphere. Most energy is deposited near the morning and afternoon/evening sides of the auroral oval and in the cusp region. Multi‐instrument data assimilation can help quantify complex spatial/temporal variations of Joule heating. Rapid changes of heating launch gravity waves that propagate globally. Within several hours, a global circulation sets up that reduces horizontal variations of the pressure scale height, causing spatial correlation between the temperature and the mean molecular mass. The distributions of temperature and density in the upper thermosphere often show little relation to the distribution of Joule heating. Vertical winds decrease the O/N2 ratio in regions of heating and increase the ratio in regions of subsidence. The upper thermosphere is affected more strongly by the fraction of Joule heating deposited above 150 km than by the larger amount of Joule heating deposited below 150 km.

1.1. INTRODUCTION

Joule heating, which is the irreversible conversion of electromagnetic energy into heat through ohmic currents, is a significant source of energy for the high‐latitude thermosphere (Cole, 1962; Thayer, 2000; Lu et al., 2016). Unlike heating by solar ultraviolet and extreme ultraviolet radiation, Joule heating occurs over only a small fraction of the Earth, and can drive large vertical velocities that alter the thermospheric circulation, leading to local and global temperature increases and changes in the structure of thermospheric composition, temperature, and density (e.g., Taeusch et al., 1971; Mayr & Volland, 1972, 1973; Mayr et al., 1978; Volland, 1979; Roble et al., 1983; Rees & Fuller‐Rowell, 1989; Rees, 1995; Liu & Lühr, 2005; Sutton et al., 2005; Lei et al., 2010; Liu et al., 2010; Fedrizzi et al., 2012; Fuller‐Rowell, 2013). Thermospheric responses to Joule heating during magnetic storms can be dramatic (e.g., Prölss, 1980, 1995; Rishbeth, 1991; Fuller‐Rowell et al., 1994, 1997; Rees, 1995; Lu et al., 2016; Deng et al., 2018). In addition to temperature increases, which produce large density increases in the upper thermosphere, the upwelling in the high‐latitude region of heating induces a global circulation within several hours (Volland & Mayr, 1971; Mayr & Volland, 1973), accompanied by downwelling at lower latitudes. The circulation dampens the upper‐thermosphere density response at high latitudes and spreads this response globally. The upwelling decreases the O/N2 ratio at high latitudes (Taeusch et al., 1971; Mayr & Volland, 1972; Lu et al., 2016). Rapid variations of the heating generate thermospheric gravity waves in the lower thermosphere that propagate globally into the upper thermosphere, causing oscillations of wind, temperature, composition, and density as well as large‐scale traveling ionospheric disturbances (e.g., Wright, 1960; Lu et al., 2016). The effects of Joule heating depend not only on its highly variable intensity and its distribution over the polar regions, but also on the altitude distribution of the heating. Effects observed in the upper thermosphere have a complex relation to the heating distribution, such that thermospheric density increases usually do not coincide with regions of maximum heat input, due not only to the presence of gravity waves, but also to the fact that circulation changes rapidly redistribute density (Johnson, 1960). Furthermore, temperature changes are coupled to composition changes, such that the temperature and the thermospheric O/N2 ratio tend to be inversely correlated in space. This is due to the tendency of the circulation to smooth out horizontal variations of the pressure scale height (Hays et al., 1973). This effect contributes to the fact that horizontal variations of density and composition during magnetic storms can be very different (e.g., Lei et al., 2010).

1.2. PHYSICS OF JOULE HEATING

The physics of thermospheric Joule heating involves collisional interactions among electrons, positive ions, and neutral molecules. These species have differential bulk motions owing to the presence of electric and magnetic fields, so that collisions result in frictional momentum exchange and heating (e.g., Brekke & Kamide, 1996; Thayer & Semeter, 2004; Zhu et al., 2005; Vasyliunas & Song, 2005; Strangeway, 2012). The sum of frictional heating of all species gives the total Joule heating. The frictional heating causes the species to have different temperatures, with the electron and ion temperatures exceeding the neutral temperature (e.g., St. Maurice & Hanson, 1982; Heelis & Coley, 1988; St. Maurice et al., 1999), and additional collisions transfer heat from hotter to cooler species. On timescales longer than...

Inhaltsverzeichnis