Soil Biochemistry
eBook - ePub

Soil Biochemistry

Volume 7

Jean-Marc Bollag, G. Stotzky

Buch teilen
  1. 432 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Soil Biochemistry

Volume 7

Jean-Marc Bollag, G. Stotzky

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

This book describes the interactions between soil minerals and microorganisms to more specialized areas such as the formation of desert varnishes. It is helpful for scientists and students who want to extend their knowledge of and research into soil biochemistry.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Soil Biochemistry als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Soil Biochemistry von Jean-Marc Bollag, G. Stotzky im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Ciencias biológicas & Bioquímica. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
CRC Press
Jahr
2021
ISBN
9781000447392

1
Biochemistry of Sulfur Cycling in Soil

JAMES J. GERM
IDA University of Saskatchewan, Saskatoon, Saskatchewan, Canada
MILTON WAINWRIGHT
University of Sheffield, Sheffield, England
VANDAKATTU V. S. R. GUPTA*
University of Saskatchewan, Saskatoon, Saskatchewan, Canada
* Present affiliation: Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, Australia.

I. INTRODUCTION

Sulfur (S) is an essential element for the growth and activity of organisms. It is abundant throughout the earth’s crust (ca. 0.1%), and in soil it is derived from the atmosphere, weathered rock, fertilizers, pesticides, irrigation water, and such [1]. Since the industrial revolution, the increased burning of fossil fuels has resulted in a greater input of atmospheric S to the soil budget [24]. In addition, volatilization of S (as hydrogen sulfide, carbon disulfide, carbonyl sulfide, methyl mercaptan, dimethyl sulfide, dimethyl disulfide, sulfur dioxide) from marine algae, marsh lands, mud flats, plants, and soils contributes to the global circulation of S through the atmosphere.
Sulfur exists in a number of oxidation states (+6 to −2), and for biological systems, it is the most oxidized and most reduced states that are important. The most oxidized form is a component of the nervous system (sulfatides) and connective tissue (sulfated polysaccharides), whereas the most reduced form is required by all microorganisms for storage and transformations of energy, synthesis of amino acids and proteins, enzyme reactions, and as a constituent of coenzymes, ferridoxins, vitamins, and others [5].
Sulfur is considered to be a macronutrient in most ecosystems, but in some ecosystems, the availability of S to the biota is limiting. For example, sulfur-deficient soils (> 100 million ha) are found in many parts of the world [6], and over 8 million ha in western Canada are either deficient or potentially deficient [7]. Plants need substantial amounts of S for growth and grain production, with their requirements varying according to species. As a result, to manage effectively the S needs of crops, it is important to understand the nature and quantities of different S pools in soil and the various transformation processes of the S cycle (Fig. 1). This review discusses the major pools and transformations of the soil S cycle, with particular emphasis given to biological and biochemical processes.
Figure 1 The global sulfur cycle. The fluxes are given in millions of tonnes sulfur per year (tg S yr−1). Numbers in italics indicate the amounts that anthropogenic activities have added; nonitalic numbers denote the transfers estimated to have prevailed before anthropogenic activities had a significant influence on the sulfur cycle. Adapted from Ref. 8.
Figure 1 The global sulfur cycle. The fluxes are given in millions of tonnes sulfur per year (tg S yr−1). Numbers in italics indicate the amounts that anthropogenic activities have added; nonitalic numbers denote the transfers estimated to have prevailed before anthropogenic activities had a significant influence on the sulfur cycle. Adapted from Ref. 8.

II. NATURE AND FORMS OF SULFUR IN SOIL

The nature and quantities of various S pools in soil are influenced by pedogenic factors, such as climate, regional vegetation, and local topography. The total S content of soils ranges from 0.002 to 10% [9], with the highest levels being found in tidal flats and in saline, acid sulfate, and organic soils. The total S concentrations in the surface layers of soils from various parts of the world range from 18 to 6400 μg S g−1 for African soils; 42 to 6450 μg S g−1 for Asian soils, 24 to 2000 μg S g−1 for Australian soils; 20 to 4210 μg S g−1 for European soils, 145 to 8000 μg S g−1 for soils in the USSR; 32 to 2300 μg S g−1 for North American soils; and 27 to 1104 μg S g−1 for Central and South American soils [6, 7]. The total S content in western Canadian agricultural soils ranges from 0.01 to 0.1% [6, 7, 10]. Roberts and Bettany [11] reported that the total S in surface horizons increases from semiarid (Brown Chernozems) to more humid soil zones (Black Chernozems), and from the upper to lower slope portions of catenas in Saskatchewan, Canada.
Organic S constitutes more than 90% of the total S present in most surface soils [9, 11, 12]. Thus, a close relation exists between the organic C, total N, and organic S contents of soil. Freney and Williams [9] summarized information on the C:N:S ratios for a wide range of soils from all over the world and reported ratios ranging from 50:4:1 (cultivated brown Chernozems of western Canada) to 271:13:1 (virgin Luvisols of Canada), depending on various pedogenic factors. The mean worldwide C:N:S ratio isapproximately 130:10:1 for agricultural soils and 200:10:1 for native grassland and woodland soils [6, 7, 10]. The differences in the organic C:N:S ratios of various regions and landscapes have only recently been stressed [11, 12]. Organic C:N:S increased from 68:7:1 in Brown Chernozemic soils to 145:11:1 in Gray soils, with a similar trend being noted downslope within a catena [11]. Native grassland soils generally exhibit wider C: N: S ratios than their cultivated counterparts. For example, the C:N:S ratios of the native and cultivated gray wooded soils of western Canada are 271:13:1 and 129: 11:1, respectively [7]. In contrast to C:S ratios, the variation in N:S ratios as the result of cultivation and between soil groups is less, and most agricultural soils have N: S ratios in the range of 6:1 to 10:1. In agricultural soils, the N:S ratio usually tends to decrease with increasing soil depth.
Cultivation of native pasture soils causes a more rapid loss of N than of S, but the loss of carbon-bonded S (C-S) follows more closely that of N [13]. This results in higher HI-S:C-S ratios in cultivated soils than in native pastures. The hydriodic acid-reducible sulfur (HI-S) fraction is organic sulfur that is directly reducible to H2S by hydriodic acid; it is believed to comprise mainly ester sulfates [14]. Similar observations have been reported by other workers [12, 1517] and might be explained by the difference between biochemical and biological mineralization of organic compounds in soil.

A. Inorganic Sulfur

Inorganic forms of S account for less than 25% of the total S in most agricultural soils [18]. Sulfide (S2−), elemental S (S0), sulfite (SO32−), thiosulfate (SO2O32−), tetrathionate (S4O62−) and sulfate (SO42−) are the main forms of inorganic S in agricultural soils. In well-drained soils sulfides account for less than 1% of the total S [19], and measurable quantities of S2O32− and S4O62− are detected only in soils treated with S0 fertilizer or exposed to pollutants [20, 21, J. R. Lawrence, Microbial oxidation of elemental sulfur in agricultural soils, PhD dissertation, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, 1987]. There are several forms of SO42−, including easily soluble SO42−, adsorbed SO42−, insoluble SO42−, and SO42− coprecipitated/cocrystallized with CaCO3. Water-soluble salts of Mg, Ca, and NaSO4 account for less than 5% of the total S in surface horizons of most well-drained soils, although higher levels may accumulate under arid conditions [10]. Sulfate adsorption is influenced by soil pH, nature of colloidal surfaces, presence...

Inhaltsverzeichnis