
eBook - ePub
Wasserstoff und Brennstoffzellen
Die Technik von gestern, heute und morgen
- 240 Seiten
- German
- ePUB (handyfreundlich)
- Über iOS und Android verfügbar
eBook - ePub
Über dieses Buch
Zunächst der Atomausstieg – dann der Kohleausstieg. Beide Großtechnologien durch erneuerbare Energien zu ersetzen ist eine Herkulesaufgabe. Umso wichtiger ist es, endlich auf die Alternativen zu schauen. Die Wissenschaft ist sich schon seit Jahren darüber einig, dass die erneuerbaren Energien eine zuverlässige Energieversorgung sicherstellen können. Eine von mehreren Voraussetzungen ist aber, dass Solar- und Windstrom effizient gespeichert werden kann. Und genau an dieser Schnittstelle, bei der Energiespeicherung von "grünem Strom", kommt Wasserstoff ins Spiel. Wasserstoff ist der aussichtsreichste Energiespeicher, um Sonnen- und Windstrom auch über längere Zeiträume bevorraten zu können. Die Idee einer solaren Wasserstoffwirtschaft beziehungsweise von Wind-Wasserstoff ist nicht neu, aber noch nie waren die Voraussetzungen so gut wie heute, um diese Idee in die Realität umzusetzen. Dieses Buch skizziert den Weg dorthin – von der gestrigen über die aktuelle hin zu einer zukunftsfähigen, wirklich nachhaltigen Energieversorgung. Geitmann und Augsten widmen ihre Aufmerksamkeit dafür ganz der Wasserstoff- und Brennstoffzellentechnik – denn Wasserstoff als der Energiespeicher und die Brennstoffzelle als der Energiewandler der Zukunft können gemeinsam den Aufbau einer weltweiten Wasserstoffwirtschaft ermöglichen. Sie sind essenzielle Bausteine für das Gelingen der Energiewende.
Häufig gestellte Fragen
Ja, du kannst dein Abo jederzeit über den Tab Abo in deinen Kontoeinstellungen auf der Perlego-Website kündigen. Dein Abo bleibt bis zum Ende deines aktuellen Abrechnungszeitraums aktiv. Erfahre, wie du dein Abo kündigen kannst.
Derzeit stehen all unsere auf mobile Endgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Perlego bietet zwei Pläne an: Elementar and Erweitert
- Elementar ist ideal für Lernende und Interessierte, die gerne eine Vielzahl von Themen erkunden. Greife auf die Elementar-Bibliothek mit über 800.000 professionellen Titeln und Bestsellern aus den Bereichen Wirtschaft, Persönlichkeitsentwicklung und Geisteswissenschaften zu. Mit unbegrenzter Lesezeit und Standard-Vorlesefunktion.
- Erweitert: Perfekt für Fortgeschrittene Studenten und Akademiker, die uneingeschränkten Zugriff benötigen. Schalte über 1,4 Mio. Bücher in Hunderten von Fachgebieten frei. Der Erweitert-Plan enthält außerdem fortgeschrittene Funktionen wie Premium Read Aloud und Research Assistant.
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ja! Du kannst die Perlego-App sowohl auf iOS- als auch auf Android-Geräten verwenden, um jederzeit und überall zu lesen – sogar offline. Perfekt für den Weg zur Arbeit oder wenn du unterwegs bist.
Bitte beachte, dass wir keine Geräte unterstützen können, die mit iOS 13 oder Android 7 oder früheren Versionen laufen. Lerne mehr über die Nutzung der App.
Bitte beachte, dass wir keine Geräte unterstützen können, die mit iOS 13 oder Android 7 oder früheren Versionen laufen. Lerne mehr über die Nutzung der App.
Ja, du hast Zugang zu Wasserstoff und Brennstoffzellen von Sven Geitmann,Eva Augsten im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Technik & Maschinenbau & Maschinenbau Allgemein. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.
Information

1 EINLEITUNG: RETTET WASSERSTOFF DAS KLIMA?
Die Sonne scheint und scheint. Die Vision, diese schier endlos anmutende Energiequelle zu nutzen und mithilfe des Energieträgers Wasserstoff zu speichern, ist schon viele Jahrzehnte alt. Dennoch wurde sie meist als utopisch angesehen. Sowohl die Solar- als auch die Wasserstofftechnologie waren zu teuer, fossile Brennstoffe dagegen billig und scheinbar unbegrenzt verfügbar.
Inzwischen aber hat sich der Wind gedreht: Solarenergie ist an vielen Orten der Welt die preiswerteste Art, Strom zu erzeugen. Die Wasserstofftechnik steht an der Schwelle zum Markt. Und der Klimawandel ist mittlerweile so unübersehbar, dass selbst zahlreiche Vertreter der fossilen Energiewirtschaft einräumen: So wie bisher kann es nicht weitergehen.
Wasserstoff, schon oft als Hoffnungsträger gehandelt, erlebt einen neuen Frühling, getrieben von klimawissenschaftlicher Notwendigkeit, technischem Fortschritt, wirtschaftlichem Wettbewerb und politischem Willen. Der weltweit agierende Hydrogen Council erlangt immer mehr Gewicht, und im Sommer 2020 präsentierte die deutsche Bundesregierung eine Nationale Wasserstoffstrategie.
Wasserstoff ist das am meisten vorkommende Element im Universum. Das Gas verfügt über einen hohen Heizwert und verbrennt mit Sauerstoff zu nichts anderem als Wasser. Es ist extrem leicht und wird bereits seit mehr als 100 Jahren als Industriegas verwendet. Aber genügen diese Eigenschaften, um Wasserstoff zur Schlüsseltechnologie der Energiewende und zum Kraftstoff der Zukunft zu machen?
Die Anforderungen an unser künftiges Energiesystem sind mittlerweile recht klar umrissen. Die konventionelle Energieerzeugung sowie Fahrzeugtechnologien einfach nur zu optimieren und effizienter zu machen, reicht als Lösung nicht aus und kann eine wirklich nachhaltige und klimafreundliche Energieversorgung nicht gewährleisten. Die Verbrennung von fossilen Kohlenwasserstoffen muss möglichst schnell ein Ende finden, um die Ziele des Pariser Klimaabkommens einhalten zu können. Vor allem Sonne und Wind sollen die Säulen einer künftigen Energiewirtschaft sein.
Das hat verschiedene Konsequenzen. Da Sonne und Wind sich nicht steuern lassen, werden Energiespeicher aller Art wichtiger als je zuvor. Die sich rasant entwickelnde Batterietechnik kann in Zukunft dafür sorgen, dass selbst bei einer nächtlichen Flaute das Licht nicht ausgeht. Doch was noch fehlt, ist ein Verfahren, das es ermöglicht, Sonnen- und Windenergie auch über Wochen und Monate hinweg zu speichern und dann bei Bedarf für verschiedene Zwecke nutzbar zu machen. Als Speicher und als Kraftstoff spielt Wasserstoff daher in praktisch allen wissenschaftlichen Energiewendeszenarien eine zentrale Rolle.
Mit der Nationalen Wasserstoffstrategie (NWS) will die Bundesregierung nicht nur beim Klimaschutz vorankommen, sondern vor allem die wirtschaftliche Chance nutzen, die der Wasserstoff bietet. In den letzten Jahrzehnten hat Deutschland mehrere Milliarden Euro in die Entwicklung der Wasserstofftechnik investiert und sich eine gute Ausgangsposition im Rennen um die besten Technologien erarbeitet. Die soll nun genutzt werden.
Eine Aufgabe ist es dabei, die Brennstoffzelle so schnell wie möglich massentauglich zu machen. Ihre Funktionsweise basiert auf einem Prinzip, das bereits 1839 entdeckt, dann aber nicht mit sonderlich viel Vehemenz weiterentwickelt wurde. Das lässt sich durch die dominante Stellung des Verbrennungsmotors erklären, der bis Anfang des neuen Jahrtausends nie ernsthaft infrage gestellt wurde. Kohle und Öl waren einfach zu praktisch.
Die Brennstoffzelle ist im direkten Vergleich dazu jedoch effizienter, sauberer und leichter. Dies hat sie bereits in den sechziger Jahren des vergangenen Jahrhunderts bei zahlreichen Einsätzen in der Raumfahrt bewiesen. Aber obwohl an dieser Technologie schon seit zig Jahren mehr oder minder intensiv geforscht wird (s. Kap. 16.4: Geschichte), wurde erst in den 1980er Jahren erstmals ernsthaft darüber nachgedacht, Wasserstoff als Kraftstoff zu verwenden. Entscheidend war damals – in Zeiten des aufkeimenden Umweltschutzes – der ökologische Aspekt.
Nach den ersten Anläufen entwickelte sich Ende der 1990er Jahre ein regelrechter Hype um diese Technologie. Da die technische Umsetzung jedoch nicht so zügig erfolgte wie zunächst erwartet, nahm das Interesse schnell wieder ab. Mitte des ersten Jahrzehnts des 21. Jahrhunderts folgte dann die nächste Welle der Euphorie. Diese verebbte jedoch, als 2009 das Thema Elektromobilität mit den rein batteriebetriebenen Fahrzeugen in den Fokus rückte.
Heute, da Strom aus Wind- und Solarenergie immer billiger wird und der Klimaschutz immer dringlicher, erleben Wasserstoff und Brennstoffzellen einen neuen Frühling. Die Preise für die entsprechenden Technologien sind deutlich gesunken, und Szenarien zeigen, dass noch in diesem Jahrzehnt grüner Wasserstoff und effiziente Brennstoffzellen in mehreren Bereichen konkurrenzfähig werden könnten (s. Kap. 14: Kosten der Wasserstofftechnologien). Der Einstieg in die Erneuerbare-Energien-Technik war Ende des zwanzigsten Jahrhunderts sozusagen die Energiewende 1.0. In den nächsten Stufen ging es darum, wie man Wind- und Solarstrom ins bestehende System integrieren könnte. Dann kamen Energiespeicher hinzu. Als Nächstes steht die „Energiewende 4.0“ an. Das Energiesystem muss völlig neu gedacht werden. Die Sektoren Strom, Wärme und Mobilität stehen nicht mehr einfach nebeneinander, sondern verschmelzen zukünftig miteinander. Klassische, zentrale Grundlastkraftwerke wird es immer weniger geben. An ihre Stelle treten dezentrale und vernetzte Technologien. Präzise Prognosen für Wind- und Solarstrom, effiziente Speicher, die Kopplung der Sektoren und flexible Verbraucher werden dafür sorgen, dass auch das neue System zuverlässig arbeiten wird. Forschungs- und Schaufensterprojekte wie die „Norddeutsche Energiewende 4.0“ zeigen, wie das gehen kann.
Ökostrom, der gerade nicht direkt genutzt oder in Batterien kurzzeitig gespeichert wird, kann in Wasserstoff umgewandelt werden, der anschließend vielseitig nutzbar ist – als Kraftstoff, für die dezentrale Strom- und Wärmeerzeugung mit Brennstoffzellenheizungen oder als Rohstoff für die Industrie.
Die technische Entwicklung der Wasserstoff- und Brennstoffzellentechnik ist in den vergangenen Jahren weit vorangekommen. Wo vor Kurzem noch geforscht wurde, wird jetzt die praktische Umsetzung vorangetrieben.
Dieses Buch erklärt die Grundlagen und zeichnet dabei auch die Ursprünge der Technologie nach: Welche Vor- und Nachteile hat Wasserstoff? Wie wurde er bisher gewonnen und genutzt – und wie wird er in Zukunft hergestellt und eingesetzt? Wie lässt sich Wasserstoff sicher handhaben, speichern und transportieren? Wie kann er vom Grundstoff für die Chemieindustrie zur Schlüsseltechnologie für die Energiewende werden?
Viele Fragen. Freuen Sie sich auf die Antworten!

2 ENERGIEVERSORGUNG VON DER STEINZEIT BIS HEUTE
Im Laufe der Jahrhunderte und Jahrtausende haben sich die Energiequellen der Menschheit stetig gewandelt: Zunächst wurde über Jahrtausende hinweg Holz verwendet. Dann wurde in der Alt-Steinzeit aus Baumstämmen und Ästen Holzkohle hergestellt. Diese verfügte bereits über deutlich verbesserte Brenneigenschaften. Im Altertum wurden dann Braun- und Steinkohle entdeckt.
Der Vorteil der Kohle lag in ihrem höheren Brennwert. Kohle ist ein aus tierischen und pflanzlichen Substanzen entstandenes Gemisch aus verschiedenen Kohlenwasserstoffverbindungen, das aufgrund seiner Entstehungsgeschichte über eine vergleichsweise hohe Energiedichte verfügt. Ähnlich ist es beim Erdöl sowie beim Erdgas. Auch diese beiden Primärenergieträger besitzen einen relativ hohen Energiegehalt. Gegenüber Kohle sind sie zudem einfacher zu handhaben, da sie ein vergleichsweise geringeres Gewicht pro Energieeinheit aufweisen.
Diese sogenannten fossilen Primärenergieträger entstammen längst vergangenen Zeiten und haben Jahrmillionen gebraucht, bis sie ihre derzeitige Konfiguration erhalten haben. Sie benötigten besondere Voraussetzungen für ihre Entstehung, sowohl was die Temperatur und den Druck als auch die chemischen Rahmenbedingungen angeht. Erdgas zum Beispiel entstand vor ungefähr 600 Mio. Jahren aus abgestorbenen Kleinorganismen, Plankton und Algen, die sich auf dem Grund der Ozeane ablagerten und im Laufe der Zeit von Gestein- und Erdschichten überdeckt wurden. Unter Luftabschluss und bei hohem Druck bildeten sich aus diesen organischen Substanzen durch einen chemischen Prozess Kohlenwasserstoffe.
Der ursprünglich in der Atmosphäre vorhandene Kohlenstoff wurde auf diese Weise zunächst in Pflanzen und Tieren gebunden und dann im Laufe der Zeit in tiefer gelegenen Erdschichten eingeschlossen. Ursprünglich war der atmosphärische Kohlenstoffanteil um einiges höher als heute. In der Kreidezeit stapften die Dinosaurier über eine tropische Erde, die um etwa zehn Grad wärmer als heute war. Dann aber wurden mehr und mehr Kohlenstoffverbindungen unter Tage eingelagert. Der Kohlenstoff wurde zunehmend dem oberirdischen Kreislauf entzogen, so dass sich der Kohlendioxidanteil in der Atmosphäre verringerte. Da dieser Prozess nur sehr langsam ablief, hatte die Natur damals Zeit genug, um sich auf diese Veränderung einzustellen.
Seit der industriellen Revolution Ende des 18. Jahrhunderts werden diese Kohlenwasserstoffverbindungen nun wieder aus ihren unterirdischen Verstecken hervorgeholt und durch ihre Verbrennung zurück in die Atmosphäre entlassen. Im ursprünglichen Sinne ist dieser Vorgang also durchaus natürlich – er ist nur einfach um ein Zigfaches zu schnell. Ein maßgeblicher Anteil des Kohlenstoffs, der über Jahrmillionen unterirdisch gespeichert war, wird nun in kaum mehr als 100 Jahren wieder freigesetzt. Die Nutzung fossiler Ressourcen begann in den Jahren 1858/59 fast zeitgleich in Celle, Deutschland, und in Pennsylvania, USA. Einen Ölboom, wie er in Nordamerika in den Folgejahren ausbrach, konnte Deutschland allerdings nicht verzeichnen. Damals wie heute fördern die Deutschen nur etwa drei Prozent ihres Ölbedarfs selbst. Die verstärkte Nutzbarmachung von Erdgas folgte erst in den 1970er Jahren. Bis dahin wurde das Gas als störend empfunden und einfach am Ort der Förderung abgefackelt.
Bis heute wird der größte Anteil fossiler Energien in den Industrieländern verbraucht. Die Emissionen, die in diesen Ländern verursacht werden, verursachen aber auch in anderen Regionen erhebliche Schäden. Abgasschadstoffe verunreinigen über Ländergrenzen hinweg die Luft, undichte Öl- und Gaspipelines verseuchen Grundwasser und Böden, gekenterte Tankschiffe verdrecken Meere und Meeresbewohner. In vielen Fällen bezahlen somit unbeteiligte Lebewesen – Menschen, Tiere und Pflanzen – mit ihrer Gesundheit für die Annehmlichkeiten der Industrienationen.
Der unbändige Energiehunger der Menschheit ist indessen noch längst nicht gestillt. Als zusätzliche Option wurde deswegen die Kernenergie ins Spiel gebracht, die Anfang des 20. Jahrhunderts entdeckt worden war. Mit dieser Technik können zwar beeindruckend große Energiemengen aus relativ kleinen Mengen Kernbrennstoff gewonnen werden. Dafür treten bei der Nutzung aber schwerwiegende Entsorgungs- und Gesundheitsprobleme auf, die nicht nur uns, sondern auch noch zahlreiche künftige Generationen in erheblichem Maße belasten werden. Dieser Ausflug in die Kerntechnik entpuppte sich folglich als Holzweg (s. Kap. 2.4: Ausweg Atomenergie).
2.1 DER ENERGIEBEDARF WÄCHST
Der weltweite Energiebedarf ist beträchtlich und nimmt stetig weiter zu. Ein entscheidender Faktor ist dabei das Bevölkerungswachstum. Die Weltpopulation wird seit den ersten Schritten des Homo sapiens immer größer. Momentan wächst die Erdbevölkerung pro Jahr um 80 Mio. Menschen an. 2020 wurde die 7,8-Mrd.-Grenze überschritten. Aktuelle Studien gehen davon aus, dass in den 2060ern mit rund 9,7 Milliarden Menschen ein Maximum erreicht wird.
ABB. 1: Der globale Primärenergiebedarf ist in den letzten Jahrzehnten stetig gewachsen

Quelle: IEA/BMWI
Mit der Zahl der Menschen auf diesem Planeten steigt auch die benötigte Energiemenge. Zudem nimmt der Energiebedarf pro Person immer weiter zu, denn auch der Lebensstandard steigt global – wenn auch auf stark unterschiedlichem Niveau.
Diese beiden Aspekte gehen einher mit der weltweit fortschreitenden Industrialisierung. Ebenso wie der Lebensstandard klaffen auch die Energieverbräuche in den verschiedenen Erdteilen noch immer stark auseinander: Nordamerika und Europa sind für mehr als ein Drittel des Weltenergiebedarfs verantwortlich, machen aber nur ein knappes Viertel der Erdbevölkerung aus. Rund 15 Prozent aller Menschen lebten 2019 in Afrika und verbrauchten zusammen 3,4 Prozent der weltweit erzeugten Energie. Im Milliardenstaat China nähert sich der Energieverbrauch pro Kopf zügig dem westlichen Niveau, und auch in Indien, dessen Bevölkerungsgröße bald die Chinas überflügeln wird, nehmen immer mehr Menschen ihr Recht auf mehr Mobilität und bessere Energieversorgung wahr, wie es die Bewohner der westlichen Industriestaaten bereits tun.
Das stärkste Wachstum des Energiebedarfs erwartet die Internationale Energieagentur IEA für die nächsten Jahrzehnte jedoch in ...
Inhaltsverzeichnis
- Cover
- Titel
- Impressum
- Autorenvorwort Zur 4. Auflage
- Vorwort
- Inhaltsverzeichnis
- 1 Einleitung: Rettet Wasserstoff das Klima?
- 2 Energieversorgung von der Steinzeit bis heute
- 3 Wasserstoff und seine Eigenschaften
- 4 Gewinnung von Wasserstoff
- 5 Speicherung von Wasserstoff
- 6 Transport
- 7 Tankstellen-Infrastruktur
- 8 Sicherheit
- 9 Brennstoffzelle
- 10 Einsatzgebiete
- 11 Wasserstoffmotor
- 12 Wasserstoff für die Industrie
- 13 Katalytischer Brenner
- 14 Kosten der Wasserstofftechnologien
- 15 Fazit und Ausblick
- 16 Anhang
- Literatur
- Index
- Autoren