Electromyography in Clinical Practice
eBook - ePub

Electromyography in Clinical Practice

A Case Study Approach

Bashar Katirji

Buch teilen
  1. 432 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Electromyography in Clinical Practice

A Case Study Approach

Bashar Katirji

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

The only case-based guide to electromyography—back in a fully revised and updated New Edition! This practical resource examines how to approach, diagnose, and manage the most commonly encoun-tered disorders in the EMG laboratory. Based on actual cases, it correlates patient history, physical exam, EMG findings, relevant anatomy, treatment, and follow-up to help readers sharpen their clinical problem-solving skills. New cases have been added, and every case includes the latest advances in knowledge and technique.

  • Features study questions, answers, and clinical discussions of how experts manage cases to help readers work through the problems presented.
  • Summarizes the results of nerve conduction studies and EMG data with standardized tables. Includes more than 200 relevant imaging studies and anatomic figures.
  • Makes information easy to find with a uniform chapter organization.
  • Offers a consistent approach to electromyography based on Dr. Katirji's broad knowledge and clinical experience.
  • 7 new case studies, including Hereditary Neuropathy with Liability to Pressure Palsy, Ischemic Monomelic Neuropathy, and Myotonic Dystrophy.
  • Three new chapters on Nerve Conduction Studies, Needle EMG Examination, and Specialized Procedures.
  • Many new and revised figures that clarify complex information.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Electromyography in Clinical Practice als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Electromyography in Clinical Practice von Bashar Katirji im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Medicina & Neurologia. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
Mosby
Jahr
2007
ISBN
9780323070348
Auflage
2
PART I
Introduction to Clinical Electromyography
Chapter 1 The Scope of the EMG Examination
Electromyography (EMG) is a term that was first coined by Weddell et al in 1943 to describe the clinical application of needle electrode examination of skeletal muscles. Since then, and at least in North America, the nomenclature “EMG” or “clinical EMG” has been used by physicians to refer to the electrophysiologic examination of peripheral nerve and muscle that include the nerve conduction studies (NCS) as well as the needle evaluation of muscles. These terms continue to cause confusion that hinders communication among physicians and healthcare workers. Some physicians refer to the study as EMG/NCS, reserving the name EMG solely to the needle EMG evaluation and adding the term NCS to reflect the nerve conduction studies separately. Others have used the title needle EMG or needle electrode examination to reflect the needle evaluation of muscles, while keeping the term EMG to describe the entire evaluation of nerve and muscle. More recently, a nonspecific term, the “electrodiagnostic (EDX) examination,” has gained popularity to serve as an umbrella covering both the needle EMG and NCS. Other nomenclature used worldwide includes the electrophysiologic examination, which may be confused with the cardiac electrophysiological studies, and the electroneuromyographic (ENMG) examination which is the most accurate description of the study, yet unfortunately not widely used. Finally, physicians performing and interpreting these studies are called electromyographers (EMGers), electrodiagnosticians, or EDX consultants.
Regardless, the designations, EDX, EMG, clinical EMG, or ENMG examinations are best used interchangeably to reflect the entire electrophysiological study of nerve and muscle (NCS and needle EMG), while the terms “needle EMG” or needle electrode examination should be reserved for the specific testing which involves needle electrode evaluation of muscle. This author uses the terms EMG examination and EDX examination interchangeably, and refers to the needle examination of muscle as needle EMG.
The EDX examination comprises a group of tests that are usually complementary to each other and often nec-essary to diagnose or exclude a neuromuscular problem (Table 1-1). These include principally the nerve conduction studies (NCS), that are sensory, motor, or mixed, and the needle EMG, sometimes referred as “conventional” or “routine” needle EMG to distinguish this test from other needle EMG studies including single fiber EMG and quantitative EMG. Also, “concentric” or “monopolar” needle EMG is sometimes utilized to reflect the type of needle electrode used. In addition to the two main components of the EMG examination, three late responses are often incorporated with the NCSs and have become an integral part of the NCSs. These include the F waves also referred to as F responses, the H reflexes also known as H responses, and the blink reflexes. Two specialized tests are often added to the routine EDX study mainly in patients with suspected neuromuscular junction disorders. These include the repetitive nerve stimulations and the single fiber EMG. Finally, a group of specialized studies that require special expertise as well as sophisticated equipment and software, used as a clinical and research tool in the assessment of the microenvironment of the motor unit, include motor unit action potential (MUAP) morphology analysis, MUAP turns and amplitudes analysis, macro EMG, motor unit number estimate (MUNE), and near-nerve recording studies.
Table 1-1 The Spectrum of Clinical Electromyography (Electrodiagnosis)
1. Nerve conduction studies
Sensory
Motor
Mixed
2. Needle electromyography (routine, conventional)
Concentric
Monopolar
3. Late responses
F waves
H reflexes
Blink reflexes
4. Specialized electrodiagnostic tests
Repetitive nerve stimulation
Single fiber electromyography
Quantitative electromyography
Quantitative motor unit action potential morphology analysis
Turns and amplitude analysis
Macro electromyography
Motor unit number estimate (MUNE)
Near-nerve recording studies

THE REFERRAL PROCESS TO THE EMG LABORATORY

Patients are referred to the EMG laboratory for EDX studies following a clinical assessment by a physician who suspects a disorder of the peripheral nervous system. For example, a patient with intermittent hand paresthesias and positive Phalen’s signs may be referred to the EMG laboratory to evaluate a possible carpal tunnel syndrome. The background and specialty of the referring physician plays a significant role in the planning and execution of the EDX study. In the experience of this author, this usually follows one of these three scenarios:
1. The referring physician is also the EDX consultant (electromyographer). In other words, the patient is examined first by the EDX consultant (usually a neurologist or physiatrist) who performs and interprets the EDX study. The advantage of this situation is that the neurological examination is often thorough and the differential diagnosis is limited. Hence, the selection of NCSs and the choice of sampled muscles on needle EMG are well guided by the neurological findings. Though this situation is ideal, it is not common or practical in a busy EMG laboratory. Also with this approach, the electromyographer may encounter one or two pitfalls. The first is that he/she may perform a very limited and suboptimal study and become excessively biased by the clinical information, resulting in a significant number of diagnostic errors. The second hazard is that the EDX consultants may change the interpretation of similar findings among different studies to suit and support the clinical diagnosis. For example, a diabetic patient with denervation of quadriceps, iliacus, thigh adductors, and lumbar paraspinal muscles may be diagnosed in the EMG laboratory as consistent with lumbar radiculopathy or diabetic amyotrophy depending on the temporal course of the symptoms, pain characteristics, status of diabetic control, or findings on imaging of the spine.
2. The referring physician is well versed with the anatomy and disorders of the peripheral nervous system and the EDX examination. The physician is often a neurologist or physiatrist, but occasionally a neurosurgeon or an orthopedist. In this situation, the referral information includes brief, yet focused, clinical information, and a limited differential diagnosis. In these situations, the EDX consultant performs an EDX study on the symptomatic limb(s) to confirm or exclude the suspected diagnosis or, sometimes, makes an alternative diagnosis which may have not been considered by the referring physician.
3. The referring physician is not well versed with disorders of the peripheral nervous system. Often, the referral working diagnoses in these patients are vague, nonspecific, or extensive. Since the EDX study has limitations related to patient discomfort, expense, and time constraints, a directed neurological history and a brief neurological examination is often mandatory before planning and executing the EDX study. Unfortunately, contacting the referring physician to extract more specific information is often not fruitful.

THE EMG LABORATORY PROCEDURES

Testing an Adult

Patients referred to the EMG laboratory should have a referral form completed by the referring physician with relevant clinical information and preferably a pertinent neurological differential diagnosis (Figure 1-1). Referring physicians should also describe the EDX study to their adult patients, particularly in regard to the discomfort associated with it, without creating unnecessary heightened anxiety. If unclear about the technical details of the procedure, they should encourage their patients to contact the EMG laboratory prior to the test date, to get a verbal or written description of the procedure. Such written descriptions should be widely available in all referring physic...

Inhaltsverzeichnis