Neurocritical Care Management of the Neurosurgical Patient E-Book
eBook - ePub

Neurocritical Care Management of the Neurosurgical Patient E-Book

Monisha Kumar, Joshua Levine, James Schuster, Andrew W. Kofke

Buch teilen
  1. 500 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Neurocritical Care Management of the Neurosurgical Patient E-Book

Monisha Kumar, Joshua Levine, James Schuster, Andrew W. Kofke

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Kumar and colleagues' Neurocritical Care Management of the Neurosurgical Patient provides the reader with thorough coverage of neuroanatomical structures, operative surgical approaches, anesthetic considerations, as well as the full range of known complications relating to elective and non-elective neurosurgical procedures. Drawing upon the expertise of an interdisciplinary team of physicians from neurosurgery, neurology, anesthesiology, critical care, and nursing backgrounds, the text covers all aspects intensivists need to be aware of in order to provide optimal patient care.

  • Over 100 world-renowned authors from multispecialty backgrounds (neurosurgeons, neuro-interventionalists, and neurointensivists) and top institutions contribute their unique perspectives to this challenging field.
  • Six sections cover topics such as intraoperative monitoring, craniotomy procedures, neuroanesthesiology principles, spine and endovascular neurosurgery, and additional specialty procedures.
  • Includes 300 tables and boxes, 70 line artworks, and 350 photographic images.
  • Clinical pearls pulled out of the main text offer easy reference.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Neurocritical Care Management of the Neurosurgical Patient E-Book als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Neurocritical Care Management of the Neurosurgical Patient E-Book von Monisha Kumar, Joshua Levine, James Schuster, Andrew W. Kofke im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Medicina & Neurocirugía. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
Elsevier
Jahr
2017
ISBN
9780323322225
Section 1
Neuroanesthesia and Perioperative Care
1

Effects of Anesthetics, Operative Pharmacotherapy, and Recovery from Anesthesia

Zirka H. Anastasian; John G. Gaudet

Introduction

Even after completion of a neurosurgical intervention, intraoperative factors, including anesthetic agents, pharmacotherapy, and surgery, may have lasting effects that persist through recovery. The goal of this chapter is to discuss the effects of intraoperative factors, such as anesthetic effect and surgical manipulation, on postoperative recovery, including respiratory function, nausea and vomiting, glucose control, temperature variations, pain management, and delirium and cognitive dysfunction.
Key Concepts
Anesthetics, sedatives, and opioids impair respiratory arousal by reducing chemoresponsiveness to hypoxemia and hypercarbia.
The effect of anesthetics on respiratory muscles depends on the agent, the dose, the patient’s state of consciousness, and the specific muscle group.
Risk factors for postoperative respiratory depression in patients with obstructive sleep apnea include the severity of sleep apnea, the dose of systemic opioids, the use of sedatives, the site and invasiveness of surgical procedure, and the potential for apnea during rapid eye movement (REM) rebound.
When neuromuscular blockade is employed, it is necessary to monitor the degree of neuromuscular blockade and consider adequacy and potential side effects of reversal of neuromuscular blockade.

Respiratory Muscle Effects

The muscles involved in respiration are skeletal muscles and can be classified by their anatomical function into two groups: (1) upper airway dilators and (2) respiratory pump muscles. Upper airway dilator muscles counterbalance the negative inspiratory pressure generated by the respiratory pump muscle to permit airflow during inspiration.1
Surgery itself can have direct effects on respiratory pump muscles by functional disruption (injury of muscle), postoperative pain leading to restrictions on ventilation, and phrenic nerve injury resulting in diaphragm dysfunction. Other factors that affect diaphragmatic dysfunction postoperatively include inflammation2 and reflex vagal inhibition.3 Indirect effects of abdominal surgery may increase intraabdominal pressure. Increased intraabdominal pressure decreases chest wall compliance and increases the work of breathing, further taxing the muscles of the respiratory pump.1
Upper airway muscles are generally more sensitive to anesthetics and sedatives than respiratory pump muscles. Animal trials have shown that although volatile anesthetics, barbiturates, and benzodiazepine anesthetics all decrease neural input to both upper airway (hypoglossal nerve) and respiratory pump muscles (phrenic nerve), the decrease of upper airway neural input is much more than respiratory pump muscles.4 In human clinical studies, even subhypnotic concentrations of propofol, isoflurane, and sevoflurane increase the incidence of pharyngeal dysfunction. This places patients at increased risk for aspiration of pharyngeal contents during recovery of anesthesia. The effect on the pharyngeal contraction pattern may be most pronounced in patients treated with propofol because propofol use results in markedly reduced pharyngeal contraction.5 In contrast, ketamine reduces neural input to both the upper airway and respiratory muscles equally. Reduction in neural input to the upper airway muscles is much less with ketamine relative to the other classes of anesthetics.4 Ketamine has no inhibitory effect on genioglossus activity. Unlike other anesthetics, ketamine preserves a high level of upper airway dilator muscle activity, similar to that of conscious patients.6 Ketamine, however, is a sialagogue, a property that can occasionally be problematic.
Opioid analgesics cause respiratory depression via both upper airway dilator and respiratory pump muscle dysfunction. Opioids reduce genioglossus activity in animals, decrease vagal motor neuron activity in the laryngeal abductors, and increase vagal motor neuronal activity in adductors.79 These changes result in increased upper airway resistance and possibly vocal cord closure, as well as pharyngeal airflow obstruction.9 Opioid analgesia also increases abdominal muscle activity, which produces a rapid decrease in end-expiratory lung volume and functional residual capacity, contributing to a higher degree of atelectasis.10 Chest wall rigidity also occurs with the use of opioids, even when dosed conservatively.11
Clinical Pearl
Upper airway muscles are generally more affected by anesthetics and sedatives than respiratory pump muscles.
Controlled ventilation immobilizes the diaphragm and disrupts diaphragmatic function. Controlled ventilation is associated with proteolysis in the diaphragm, which over a long period leads to diaphragmatic atrophy and dysfunction.12 As little as 18 hours of controlled ventilation results in diaphragmatic atrophy and decreases contractile function.13 Duration of controlled ventilation correlates with thinning, injury, and atrophy of the diaphragm.14,15
Neuromuscular blocking agents (NMBAs) are often used during surgery to provide immobility and optimal operating conditions. Train-of-four (TOF) ratios are customary measures to assess neuromuscular blockade at muscle groups. The TOF ratio value is determined by the ratio of the last twitch height to the first twitch height after a TOF twitches. Recovery at the adductor pollicis is often used for this assessment because the hand is generally convenient and available for monitoring purposes. A TOF ratio of 0.6 or more predicts acceptable recovery of forced vital capacity,16,17 and for many years recovery to a TOF ratio of 0.7 was considered indicative of adequate recovery of neuromuscular function.18 Recovery from NMBA generally occurs sooner at the diaphragm than peripheral muscles, such as the hand muscles. Therefore tidal volumes are usually preserved, whereas residual paralysis may still be noted by peripheral monitoring.19,20 However, a TOF ratio of 0.6 and even 0.8 may be insufficient to ensure recovery of respiratory function. TOF ratios of < 1.0 are associated with decreased forced inspiratory volume in one second (FIV1), upper airway obstruction, and impaired pharyngeal function and impaired ability to swallow.16,21
Even when nerve stimulators are used, subjective tactile or visual evaluation of the evoked response to indirect nerve stimulation is notoriously inaccurate. Once the TOF ratio exceeds 0.4, most clinicians cannot detect the presence of any fade in the twitches upon four stimuli.22 A very strong case can be made for the routine administration of a nondepolarizing reversal agent (cholinesterase inhibitor), unless it can be objectively demonstrated that complete recovery (TOF rati...

Inhaltsverzeichnis