An Invitation to Abstract Algebra
eBook - ePub

An Invitation to Abstract Algebra

Steven J. Rosenberg

Buch teilen
  1. 392 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

An Invitation to Abstract Algebra

Steven J. Rosenberg

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Studying abstract algebra can be an adventure of awe-inspiring discovery. The subject need not be watered down nor should it be presented as if all students will become mathematics instructors. This is a beautiful, profound, and useful field which is part of the shared language of many areas both within and outside of mathematics.

To begin this journey of discovery, some experience with mathematical reasoning is beneficial. This text takes a fairly rigorous approach to its subject, and expects the reader to understand and create proofs as well as examples throughout.

The book follows a single arc, starting from humble beginnings with arithmetic and high-school algebra, gradually introducing abstract structures and concepts, and culminating with Niels Henrik Abel and Evariste Galois' achievement in understanding how we can—and cannot—represent the roots of polynomials.

The mathematically experienced reader may recognize a bias toward commutative algebra and fondness for number theory.

The presentation includes the following features:

  • Exercises are designed to support and extend the material in the chapter, as well as prepare for the succeeding chapters.


  • The text can be used for a one, two, or three-term course.


  • Each new topic is motivated with a question.


  • A collection of projects appears in Chapter 23.


Abstract algebra is indeed a deep subject; it can transform not only the way one thinks about mathematics, but the way that one thinks—period. This book is offered as a manual to a new way of thinking. The author's aim is to instill the desire to understand the material, to encourage more discovery, and to develop an appreciation of the subject for its own sake.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist An Invitation to Abstract Algebra als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu An Invitation to Abstract Algebra von Steven J. Rosenberg im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Mathematics & Mathematics General. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2021
ISBN
9781000516333

1 Review of Sets, Functions, and Proofs

DOI: 10.1201/9781003252139-1

1.1 Sets

Of all the things studied in mathematics, the most fundamental is the set. Although the notion of sets as the basis for thinking about math was only introduced relatively recently (for mathematics!) by Georg Cantor in the 1870s, sets now occupy a central position at the heart of mathematics.
A set is to be thought of as a collection of things, called the elements of the set. Elements of a set can be any type of thing: numbers, functions (to be defined later), or even other sets. Two sets are considered equal when they have precisely the same elements. We use the ordinary equality symbol to indicate that two sets are equal, as in “S = T.”
Notation 1.1. Let S be a set. The statement
xS,
read “x is in S” or “x in S,” means that x is an element of the set S. The statement
TS,
read “T is a subset of S,” means that each element of T is also an element of S. The statement
TS,
read “T is a proper subset of S,” means that T is a subset of S and TS.
Definition 1.2. The cardinality of a set is the number of distinct elements in the set. We denote the cardinality of the set S by S. We also speak of cardinality as size.
Definition 1.3. A singleton set is a set of cardinality 1.

1.1.1 Some Special Sets of Numbers

We have special notation for certain of the most important sets of numbers:
Z is the set of all integers, or whole numbers; we use the notation Z+ to denote the set of all positive integers;
N is the set of all natural numbers, or non-negative integers (note that we include 0 as an element of N, but some other authors do not);
Q is the set of all rational numbers, i.e., numbers which are ratios of two integers, where the denominator is not zero;
R is the set of all real numbers; and finally,
C is the set of all complex numbers.
As the first and most basic set of numbers in our list above, we remind the reader of some of the properties of Z. Given two integers a and b, we say that b divides a, written ba, if there is some integer c such that a=b·c, where ⋅ is ordinary multiplication.
The greatest common divisor of a and b, written gcd(a,b), is the largest integer d such that both da and db; the gcd exists if a0 or b0.
The least common multiple...

Inhaltsverzeichnis