Schätzen der Klassenzugehörigkeitswahrscheinlichkeit zur Definition des Arbeitsbereichs von chemieinformatorischen Klassifikationsmodellen
eBook - PDF

Schätzen der Klassenzugehörigkeitswahrscheinlichkeit zur Definition des Arbeitsbereichs von chemieinformatorischen Klassifikationsmodellen

,
  1. 318 Seiten
  2. German
  3. PDF
  4. Über iOS und Android verfügbar
eBook - PDF

Schätzen der Klassenzugehörigkeitswahrscheinlichkeit zur Definition des Arbeitsbereichs von chemieinformatorischen Klassifikationsmodellen

,

Über dieses Buch

In der vorliegenden Arbeit wurden unterschiedliche Regressions- und Klassifikationstechniken hinsichtlich ihrer Fähigkeit analysiert, Klassenzugehörigkeits-Wahrscheinlichkeiten möglichst exakt schätzen zu können. Zusätzlich wurden der Effekt der Kalibrierung mittels logistischer Regression, sowie die Einflussfaktoren Korrektklassifizierungsrate, Korrelation der Daten und Datensatzgröße untersucht. Klassenzugehörigkeits-Wahrscheinlichkeitsschätzer können verwendet werden um einen Anwendungsbereich für ein betrachtetes Klassifikations- oder Regressionsmodell zu definieren. Die Verwendung von Klassenzugehörigkeits-Wahrscheinlichkeits-schätzern zur Definition eines Anwendungsbereiches (Reject-Option) wurde verglichen mit dem Ansatz des Conformal Predictors.Das Ergebnis ist, dass alle untersuchten Techniken (Random Forests, Random Forest Regression, Support Vector Machines, Support Vector Regression, K-Nächste-Nachbarn, Partial Least Squares Discriminant Analysis, Sparse Partial Least Squares Regression, Ridge Regression, Elastic Net, Least Absolute Shrinkage and Selection Operator) mit Ausnahme der Linearen Diskriminanz Analyse, der Neuronalen Netze und des Naive Bayesian Klassifikators von der Kalibrierung mittels logistischer Regression profitieren. Die erhaltenen Klassenzugehörigkeits-Wahrscheinlichkeitsschätzer befinden sich danach näher an der wahren Wahrscheinlichkeit. Die größten Einflussfaktoren sind die Korrektklassifizierungsrate und die Korrelation der Daten. Bei einer Vielzahl der Techniken führt eine steigende Korrektklassifizierungsrate und eine abnehmende Korrelation der Daten zu schlechteren Schätzwerten. Die Bildung von Hetero-Ensemblen führt zu stabileren Schätzwerten. Gut kalibrierte Klassenzugehörigkeits-Wahrscheinlichkeitsschätzer sind, verglichen mit dem Conformal Predictor, dazu in der Lage besonders effizient, ohne viele Objekte zu verlieren, einen Anwendungsbereich zu definieren.This study analyses several regression- and classification techniques regarding their ability to estimate class-probabilities precisely. Furthermore the effect of the calibration (with use of logistic regression) and the influence factors: accuracy, correlation structure and data-set-size were analyzed. Class-probability-estimates can be used to define an applicability domain for a regression- or classification-model. The definition of an applicability domain by using class-probability-estimates (Reject Option) was compared to the approach of the Conformal Predictors.In summary, all studied techniques (Random Forests, Random Forest Regression, Support Vector Machines, Support Vector Regression, K-Nearest-Neighbor, Partial Least Squares Discriminant Analysis, Sparse Partial Least Squares Regression, Ridge Regression, Elastic Net, Least Absolute Shrinkage and Selection Operator), except Linear Discriminant Analysis, Neural Networks and Naïve Bayesian Classifier benefit from calibration with logistic regression. The accuracy and the correlation structure have the strongest impact. The stability of class-probability-estimates improves by generating hetero-ensembles. Good calibrated class-probability-estimates are able to define an applicability domain in a very efficient way, compared to the conformal predictor.

Häufig gestellte Fragen

Ja, du kannst dein Abo jederzeit über den Tab Abo in deinen Kontoeinstellungen auf der Perlego-Website kündigen. Dein Abo bleibt bis zum Ende deines aktuellen Abrechnungszeitraums aktiv. Erfahre, wie du dein Abo kündigen kannst.
Nein, Bücher können nicht als externe Dateien, z. B. PDFs, zur Verwendung außerhalb von Perlego heruntergeladen werden. Du kannst jedoch Bücher in der Perlego-App herunterladen, um sie offline auf deinem Smartphone oder Tablet zu lesen. Weitere Informationen hier.
Perlego bietet zwei Abopläne an: Elementar und Erweitert
  • Elementar ist ideal für Lernende und Profis, die sich mit einer Vielzahl von Themen beschäftigen möchten. Erhalte Zugang zur Basic-Bibliothek mit über 800.000 vertrauenswürdigen Titeln und Bestsellern in den Bereichen Wirtschaft, persönliche Weiterentwicklung und Geisteswissenschaften. Enthält unbegrenzte Lesezeit und die Standardstimme für die Funktion „Vorlesen“.
  • Pro: Perfekt für fortgeschrittene Lernende und Forscher, die einen vollständigen, uneingeschränkten Zugang benötigen. Schalte über 1,4 Millionen Bücher zu Hunderten von Themen frei, darunter akademische und hochspezialisierte Titel. Das Pro-Abo umfasst auch erweiterte Funktionen wie Premium-Vorlesen und den Recherche-Assistenten.
Beide Abopläne sind mit monatlichen, halbjährlichen oder jährlichen Abrechnungszyklen verfügbar.
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Achte auf das Symbol zum Vorlesen bei deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ja! Du kannst die Perlego-App sowohl auf iOS- als auch auf Android-Geräten nutzen, damit du jederzeit und überall lesen kannst – sogar offline. Perfekt für den Weg zur Arbeit oder wenn du unterwegs bist.
Bitte beachte, dass wir Geräte, auf denen die Betriebssysteme iOS 13 und Android 7 oder noch ältere Versionen ausgeführt werden, nicht unterstützen können. Mehr über die Verwendung der App erfahren.
Ja, du hast Zugang zu Schätzen der Klassenzugehörigkeitswahrscheinlichkeit zur Definition des Arbeitsbereichs von chemieinformatorischen Klassifikationsmodellen von im PDF- und/oder ePub-Format. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2018
ISBN drucken
9783736997226
eBook-ISBN:
9783736987227
Auflage
1

Inhaltsverzeichnis

  1. Abkürzungsverzeichnis
  2. Inhaltsverzeichnis
  3. Theoretische Grundlagen
  4. Zielsetzung der Arbeit
  5. Methoden
  6. Ergebnisse
  7. Diskussion
  8. Zusammenfassung und Schlussfolgerung
  9. Ausblick
  10. References
  11. Anhang